Background Idiopathic Pulmonary Fibrosis (IPF) represents a chronic lung disease with unpredictable course. Methods We aimed to investigate prognostic performance of complete blood count parameters in IPF. Treatment-naïve patients with IPF were retrospectively enrolled from two independent cohorts (derivation and validation) and split into subgroups (high and low) based on median baseline monocyte count and red cell distribution width (RDW). Results Overall, 489 patients (derivation cohort: 300, validation cohort: 189) were analyzed. In the derivation cohort, patients with monocyte count ≥ 0.60 K/μL had significantly lower median FVC%pred [75.0, (95% CI 71.3–76.7) vs. 80.9, (95% CI 77.5–83.1), (P = 0.01)] and DLCO%pred [47.5, (95% CI 44.3–52.3) vs. 53.0, (95% CI 48.0–56.7), (P = 0.02)] than patients with monocyte count < 0.60 K/μL. Patients with RDW ≥ 14.1% had significantly lower median FVC%pred [75.5, (95% CI 71.2–79.2) vs. 78.3, (95% CI 76.0–81.0), (P = 0.04)] and DLCO%pred [45.4, (95% CI 43.3–50.5) vs. 53.0, (95% CI 50.8–56.8), (P = 0.008)] than patients with RDW < 14.1%. Cut-off thresholds from the derivation cohort were applied to the validation cohort with similar discriminatory value, as indicated by significant differences in median DLCO%pred between patients with high vs. low monocyte count [37.8, (95% CI 35.5–41.1) vs. 45.5, (95% CI 41.9–49.4), (P < 0.001)] and RDW [37.9, (95% CI 33.4–40.7) vs. 44.4, (95% CI 41.5–48.9), (P < 0.001)]. Patients with high monocyte count and RDW of the validation cohort exhibited a trend towards lower median FVC%pred (P = 0.09) and significantly lower median FVC%pred (P = 0.001), respectively. Kaplan–Meier analysis in the derivation cohort demonstrated higher all-cause mortality in patients with high (≥ 0.60 K/μL) vs. low monocyte count (< 0.60 K/μL) [HR 2.05, (95% CI 1.19–3.53), (P = 0.01)]. Conclusions Increased monocyte count and RDW may represent negative prognostic biomarkers in patients with IPF.
Background Data on the safety and efficacy profile of tocilizumab in patients with severe COVID-19 needs to be enriched. Methods In this open label, prospective study, we evaluated clinical outcomes in consecutive patients with COVID-19 and PaO2/FiO2 < 200 receiving tocilizumab plus usual care versus usual care alone. Tocilizumab was administered at the time point that PaO2/FiO2 < 200 was observed. The primary outcome was 28-day mortality. Secondary outcomes included time to discharge, change in PaO2/FiO2 at day 5 and change in WHO progression scale at day 10. Findings Overall, 114 patients were included in the analysis (tocilizumab plus usual care: 56, usual care: 58). Allocation to usual care was associated with significant increase in 28-day mortality compared to tocilizumab plus usual care [Cox proportional-hazards model: HR: 3.34, (95% CI: 1.21–9.30), (p = 0.02)]. There was not a statistically significant difference with regards to hospital discharge over the 28 day period for patients receiving tocilizumab compared to usual care [11.0 days (95% CI: 9.0 to 16.0) vs 14.0 days (95% CI: 10.0–24.0), HR: 1.32 (95% CI: 0.84–2.08), p = 0.21]. ΔPaO2/FiO2 at day 5 was significantly higher in the tocilizumab group compared to the usual care group [42.0 (95% CI: 23.0–84.7) vs 15.8 (95% CI: − 19.4–50.3), p = 0.03]. ΔWHO scale at day 10 was significantly lower in the tocilizumab group compared to the usual care group (-0.5 ± 2.1 vs 0.6 ± 2.6, p = 0.005). Conclusion Administration of tocilizumab, at the time point that PaO2/FiO2 < 200 was observed, improved survival and other clinical outcomes in hospitalized patients with severe COVID-19 irrespective of systemic inflammatory markers levels.
<b><i>Introduction:</i></b> Treatment of interstitial lung diseases (ILDs) other than idiopathic pulmonary fibrosis (IPF) often includes systemic corticosteroids. Use of steroid-sparing agents is amenable to avoid potential side effects. <b><i>Methods:</i></b> Functional indices and high-resolution computed tomography (HRCT) patterns of patients with non-IPF ILDs receiving mycophenolate mofetil (MMF) with a minimum follow-up of 1 year were analyzed. Two independent radiologists and a machine learning software system (Imbio 1.4.2.) evaluated HRCT patterns. <b><i>Results:</i></b> Fifty-five (<i>n</i> = 55) patients were included in the analysis (male: 30 [55%], median age: 65.0 [95% CI: 59.7–70.0], mean forced vital capacity %predicted [FVC %pred.] ± standard deviation [SD]: 69.4 ± 18.3, mean diffusing capacity of lung for carbon monoxide %pred. ± SD: 40.8 ± 14.3, hypersensitivity pneumonitis: 26, connective tissue disease-ILDs [CTD-ILDs]: 22, other ILDs: 7). There was no significant difference in mean FVC %pred. post-6 months (1.59 ± 2.04) and 1 year (−0.39 ± 2.49) of treatment compared to baseline. Radiographic evaluation showed no significant difference between baseline and post-1 year %ground glass opacities (20.0 [95% CI: 14.4–30.0] vs. 20.0 [95% CI: 14.4–25.6]) and %reticulation (5.0 [95% CI: 2.0–15.6] vs. 7.5 [95% CI: 2.0–17.5]). A similar performance between expert radiologists and Imbio software analysis was observed in assessing ground glass opacities (intraclass correlation coefficient [ICC] = 0.73) and reticulation (ICC = 0.88). Fourteen patients (25.5%) reported at least one side effect and 8 patients (14.5%) switched to antifibrotics due to disease progression. <b><i>Conclusion:</i></b> Our data suggest that MMF is a safe and effective steroid-sparing agent leading to disease stabilization in a proportion of patients with non-IPF ILDs. Machine learning software systems may exhibit similar performance to specialist radiologists and represent fruitful diagnostic and prognostic tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.