Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. Here, we report on a study of >12 million variants including 163,714 directly genotyped, most rare, protein-altering variant. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5×10–8) distributed across 34 loci. While wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first signal specific to wet AMD, near MMP9 (difference-P = 4.1×10–10). Very rare coding variants (frequency < 0.1%) in CFH, CFI, and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.
Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate understanding of AMD biology and help design new therapies, we executed a collaborative genomewide association study, examining >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 genomic loci associated with AMD with p<5×10−8 and enriched for genes involved in regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching p<5×10−8 for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9/MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all loci displayed similar good ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD.
We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10 −75), ARMS2 (P < 10 −59), C2/CFB (P < 10 −20), C3 (P < 10 −9 ), and CFI (P < 10 −6). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 × 10), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 × 10 −7; CETP, P = 7.4 × 10 −7 ) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c-associated alleles near LPL (P = 3.0 × 10 −3) and ABCA1 (P = 5.6 × 10 −4). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.genome-wide association study | single nucleotide polymorphism A ge-related macular degeneration (AMD) is a progressive neurodegenerative disease and a common cause of blindness in the elderly population, particularly in developed countries (1). The disease affects primarily the macular region of the retina, which is necessary for sharp central vision. An early hallmark of AMD is the appearance of drusen, which are extracellular deposits of proteins and lipids under the retinal pigment epithelium (RPE). As the disease progresses, drusen grow in size and number. In advanced stages of AMD, atrophy of the RPE (geographic atrophy) and/or development of new blood vessels (neovascularization) result in death of photoreceptors and central vision loss.
The Maf-family transcription factor Nrl is a key regulator of photoreceptor differentiation in mammals. Ablation of the Nrl gene in mice leads to functional cones at the expense of rods. We show that a 2.5-kb Nrl promoter segment directs the expression of enhanced GFP specifically to rod photoreceptors and the pineal gland of transgenic mice. GFP is detected shortly after terminal cell division, corresponding to the timing of rod genesis revealed by birthdating studies. In Nrl ؊/؊ retinas, the GFP؉ photoreceptors express S-opsin, consistent with the transformation of rod precursors into cones. We report the gene profiles of freshly isolated flow-sorted GFP؉ photoreceptors from wild-type and Nrl ؊/؊ retinas at five distinct developmental stages. Our results provide a framework for establishing gene regulatory networks that lead to mature functional photoreceptors from postmitotic precursors. Differentially expressed rod and cone genes are excellent candidates for retinopathies.gene profiling ͉ gene regulation ͉ neuronal differentiation ͉ retina ͉ transcription factor E volution of higher-order sensory and behavioral functions in mammals is accompanied by increasingly complex regulation of gene expression (1). As much as 10% of the human genome is presumably dedicated to the control of transcription. Exquisitely timed expression of cell-type-specific genes, together with spatial and quantitative precision, depends on the interaction between transcriptional control machinery and extracellular signals (2, 3). Neuronal heterogeneity and functional diversity result from combinatorial and cooperative actions of regulatory proteins that form complicated yet precise transcriptional networks to generate unique gene expression profiles. A key transcription factor, combined with its cognate regulatory cis-sequence codes, specifies a particular node in the gene regulatory networks that guide differentiation and development (4).The retina offers an ideal paradigm for investigating regulatory networks underlying neuronal differentiation. The genesis of six types of neurons and Müller glia in the vertebrate retina proceeds in a predictable sequence during development (5). Subsets of multipotent retinal neuroepithelial progenitors exit the cell cycle at specific time points and acquire a particular cell fate under the influence of intrinsic genetic program and extrinsic factors (5-7). Pioneering studies using thymidine labeling and retroviral vectors established the order and birthdates of neurons in developing retina (5,(8)(9)(10)). The current model of retinal differentiation proposes that a heterogeneous pool of progenitors passes through states of competence, where it can generate a distinct subset of neurons (5). One can predict that, at the molecular level, this competence is acquired by combinatorial action of specific transcriptional regulatory proteins. Genetic ablation studies of transcription factors involved in early murine eye specification are consistent with combinatorial regulation (11-13).Rod and cone photorecep...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.