S evere acute respiratory syndrome coronavirus (SARS-CoV) 2, is a readily transmissible zoonotic pathogen and the etiologic agent of the coronavirus disease (COVID-19) pandemic (1). To determine aerosol stability of the virus, we measured the dynamic (short-term) aerosol efficiencies of SARS-CoV-2 and compared its efficiency with those of SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). The Study We analyzed these 3 viruses' dynamic aerosol efficiencies using 3 nebulizers, the Collison 3-jet (C3), Collison 6-jet (C6) (http://www.chtechusa.com), and Aerogen Solo (AS) (https://www.aerogen.com), to generate viral aerosols (Appendix, https://wwwnc. cdc.gov/EID/article/26/9/20-1806-App1.pdf). We performed comparative efficiency experiments once in each of 4 aerobiology laboratories (Tulane Uni
The family Arteriviridae presently includes a single genus Arterivirus. This genus includes four species as the taxonomic homes for equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), porcine respiratory and reproductive syndrome virus (PRRSV), and simian hemorrhagic fever virus (SHFV), respectively. A revision of this classification is urgently needed to accommodate the recent description of eleven highly divergent simian arteriviruses in diverse African nonhuman primates, one novel arterivirus in an African forest giant pouched rat, and a novel arterivirus in common brushtails in New Zealand. In addition, the current arterivirus nomenclature is not in accordance with the most recent version of the International Code of Virus Classification and Nomenclature. Here we outline an updated, amended, and improved arterivirus taxonomy based on current data. Taxon-specific sequence cut-offs are established relying on a newly established open reading frame 1b phylogeny and pairwise sequence comparison (PASC) of coding-complete arterivirus genomes. As a result, the current genus Arterivirus is replaced by five genera: Equartevirus (for EAV), Rodartevirus (LDV + PRRSV), Simartevirus (SHFV + simian arteriviruses), Nesartevirus (for the arterivirus from forest giant pouched rats), and Dipartevirus (common brushtail arterivirus). The current species Porcine reproductive and respiratory syndrome virus is divided into two species to accommodate the clear divergence of the European and American “types” of PRRSV, both of which now receive virus status. The current species Simian hemorrhagic fever virus is divided into nine species to accommodate the twelve known simian arteriviruses. Non-Latinized binomial species names are introduced to replace all current species names to clearly differentiate them from virus names, which remain largely unchanged.
The emergent coronavirus, designated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a zoonotic pathogen that has demonstrated remarkable transmissibility in the human population and is the etiological agent of a current global pandemic called COVID-19. We measured the dynamic (short-term) aerosol efficiencies of SARS-CoV-2 and compared the efficiencies with two other emerging coronaviruses, SARS-CoV (emerged in 2002) and Middle Eastern respiratory syndrome CoV (MERS-CoV; emerged starting in 2012). We also quantified the long-term persistence of SARS-CoV-2 and its ability to maintain infectivity when suspended in aerosols for up to 16 hours.
In 2012 a novel coronavirus, MERS-CoV, associated with severe respiratory disease emerged in the Arabian Peninsula. To date, 55 human cases have been reported, including 31 fatal cases. Several of the cases were likely a result of human-to-human transmission. The emergence of this novel coronavirus prompts the need for a small animal model to study the pathogenesis of this virus and to test the efficacy of potential intervention strategies. In this study we explored the use of Syrian hamsters as a small animal disease model, using intratracheal inoculation and inoculation via aerosol. Clinical signs of disease, virus replication, histological lesions, cytokine upregulation nor seroconversion were observed in any of the inoculated animals, indicating that MERS-CoV does not replicate in Syrian hamsters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.