A randomised, assessor- and participant-blind, sham-controlled trial was conducted to assess the safety and feasibility of adding transcranial direct current stimulation (tDCS) to quadriceps strengthening exercise in knee osteoarthritis (OA), and provide data to inform a fully powered trial. Participants were randomised to receive active tDCS+exercise (AT+EX) or sham tDCS+exercise (ST+EX) twice weekly for 8 weeks whilst completing home exercises twice per week. Feasibility, safety, patient-perceived response, pain, function, pressure pain thresholds (PPTs) and conditioned pain modulation (CPM) were assessed before and after treatment. Fifty-seven people were screened for eligibility. Thirty (52%) entered randomisation and 25 (84%) completed the trial. One episode of headache in the AT+EX group was reported. Pain reduced in both groups following treatment (AT+EX: p<0.001, partial η2 = 0.55; ST+EX: p = 0.026, partial η2 = 0.18) but no between-group differences were observed (p = 0.18, partial η2 = 0.08). Function improved in the AT+EX (p = 0.01, partial η2 = 0.22), but not the ST+EX (p = 0.16, partial η2 = 0.08) group, between-group differences did not reach significance (p = 0.28, partial η2 = 0.052). AT+EX produced greater improvements in PPTs than ST+EX (p<0.05) (superolateral knee: partial η2 = 0.17; superior knee: partial η2 = 0.3; superomedial knee: partial η2 = 0.26). CPM only improved in the AT+EX group but no between-group difference was observed (p = 0.054, partial η2 = 0.158). This study provides the first feasibility and safety data for the addition of tDCS to quadriceps strengthening exercise in knee OA. Our data suggest AT+EX may improve pain, function and pain mechanisms beyond that of ST+EX, and provides support for progression to a fully powered randomised controlled trial.
This review synthesizes the evidence of altered M1 structure, organization, and function in chronic pain populations. For most measures, M1 changes are inconsistent between studies and more research with larger samples and rigorous methodology is required to elucidate M1 changes in chronic pain populations.
ObjectivesTo test the feasibility of conducting a controlled trial into the effectiveness of a self-management programme integrated into stroke rehabilitation.DesignA feasibility cluster-randomised design was utilised with stroke rehabilitation teams as units of randomisation.SettingCommunity-based stroke rehabilitation teams in London.Participants78 patients with a diagnosis of stroke requiring community based rehabilitation.InterventionThe intervention consisted of an individualised approach to self-management based on self-efficacy. Clinicians were trained to integrate defined self-management principles into scheduled rehabilitation sessions, supported by a patient-held workbook.Main outcomes measuresPatient measures of quality of life, mood, self-efficacy and functional capacity, and health and social care utilisation, were carried out by blinded assessors at baseline, 6 weeks and 12 weeks. Fidelity and acceptability of the delivery were evaluated by observation and interviews.Results4 community stroke rehabilitation teams were recruited, and received a total of 317 stroke referrals over 14 months. Of these, 138 met trial eligibility criteria and 78 participants were finally recruited (56.5%). Demographic and baseline outcome measures were similar between intervention and control arms, with the exception of age. All outcome measures were feasible to use and clinical data at 12 weeks were completed for 66/78 participants (85%; 95% CI 75% to 92%). There was no significant difference in any of the outcomes between the arms of the trial, but measures of functional capacity and self-efficacy showed responsiveness to the intervention. Observation and interview data confirmed acceptability and fidelity of delivery according to predetermined criteria. Costs varied by site.ConclusionsIt was feasible to integrate a stroke self-management programme into community rehabilitation, using key principles. Some data were lost to follow-up, but overall results support the need for conducting further research in this area and provide data to support the design of a definitive trial.Trial registration numberISRCTN42534180.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.