Viral and host factors can shape SARS-CoV-2 evolution. However, little is known about lineage-specific and vaccination-specific mutations that occur within individuals. Here, we analysed deep sequencing data from 2,820 SARS-CoV-2 respiratory samples with different viral lineages to describe the patterns of within-host diversity under different conditions, including vaccine-breakthrough infections. In unvaccinated individuals, variant of Concern (VOC) Alpha, Delta, and Omicron respiratory samples were found to have higher within-host diversity and were under neutral to purifying selection at the full genome level compared to non-VOC SARS-CoV-2. Breakthrough infections in 2-dose or 3-dose Comirnaty and CoronaVac vaccinated individuals did not increase levels of non-synonymous mutations and did not change the direction of selection pressure. Vaccine-induced antibody or T cell responses did not appear to have significant impact on within-host SARS-CoV-2 sequence diversification. Our findings suggest that vaccination does not increase exploration of SARS-CoV-2 protein sequence space and may not facilitate emergence of viral variants.
Epistasis refers to fitness or functional effects of mutations that depend on the sequence background in which these mutations arise. Epistasis is prevalent in nature, including populations of viruses, bacteria, and cancers, and can contribute to the evolution of drug resistance and immune escape. However, it is difficult to directly estimate epistatic effects from sampled observations of a population. At present, there are very few methods that can disentangle the effects of selection (including epistasis), mutation, recombination, genetic drift, and genetic linkage in evolving populations. Here we develop a method to infer epistasis, along with the fitness effects of individual mutations, from observed evolutionary histories. Simulations show that we can accurately infer pairwise epistatic interactions provided that there is sufficient genetic diversity in the data. Our method also allows us to identify which fitness parameters can be reliably inferred from a particular data set and which ones are unidentifiable. Our approach therefore allows for the inference of more complex models of selection from time series genetic data, while also quantifying uncertainty in the inferred parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.