Trigeminal neuralgia (TN) is a severe chronic neuropathic facial pain disorder. Affect-related behavioral and structural brain changes have been noted across chronic pain disorders, but have not been well-studied in TN. We examined the potential impact of TN (37 patients: 23 with right-sided TN, 14 with left-sided TN), compared to age- and sex-matched healthy controls, on three major white matter tracts responsible for carrying affect-related signals—i.e., cingulum, fornix, and medial forebrain bundle. Diffusion magnetic resonance imaging (dMRI), deterministic multi-tensor tractography for tract modeling, and a model-driven region-of-interest approach was used. We also used volumetric gray matter analysis on key targets of these pathways (i.e., hippocampus, cingulate cortex subregions, nucleus accumbens, and ventral diencephalon). Hypotheses included: (1) successful modeling of tracts; (2) altered white matter microstructure of the cingulum and medial forebrain bundle (via changes in dMRI metrics such as fractional anisotropy, and mean, axial, and radial diffusivities) compared to controls; (3) no alterations in the control region of the fornix; (4) corresponding decreases in gray matter volumes. Results showed (1) all 325 tracts were successfully modeled, although 11 were partially complete; (2) The cingulum and medial forebrain bundle (MFB) were altered in those with TN, with dMRI metric changes in the middle (p = 0.001) and posterior cingulum (p < 0.0001), and the MFB near the ventral tegmental area (MFB-VTA) (p = 0.001). The posterior cingulum and MFB-VTA also showed unilateral differences between right- and left-sided TN patients; (3) No differences were noted at any fornix subdivision; (4) decreased volumes were noted for the hippocampus, posterior cingulate, nucleus accumbens, and ventral diencephalon. Together, these results support the notion of selectively altered affective circuits in patients with TN, which may be related to the experience of negative affect and the increased comorbidity of mood and anxiety disorders in this population.
Chronic pain has widespread, detrimental effects on the human nervous system and its prevalence and burden increase with age. Machine learning techniques have been applied on brain images to produce statistical models of brain aging. Specifically, the Gaussian process regression is particularly effective at predicting chronological age from neuroimaging data which permits the calculation of a brain age gap estimate (brain-AGE). Pathological biological processes such as chronic pain can influence brain-AGE. Because chronic pain disorders can differ in etiology, severity, pain frequency, and sex-linked prevalence, we hypothesize that the expression of brain-AGE may be pain specific and differ between discrete chronic pain disorders. We built a machine learning model using T1-weighted anatomical MRI from 812 healthy controls to extract brain-AGE for 45 trigeminal neuralgia (TN), 52 osteoarthritis (OA), and 50 chronic low back pain (BP) subjects. False discovery rate corrected Welch t tests were conducted to detect significant differences in brain-AGE between each discrete pain cohort and age-matched and sexmatched controls. Trigeminal neuralgia and OA, but not BP subjects, have significantly larger brain-AGE. Across all 3 pain groups, we observed female-driven elevation in brain-AGE. Furthermore, in TN, a significantly larger brain-AGE is associated with response to Gamma Knife radiosurgery for TN pain and is inversely correlated with the age at diagnosis. As brain-AGE expression differs across distinct pain disorders with a pronounced sex effect for female subjects. Younger women with TN may therefore represent a vulnerable subpopulation requiring expedited chronic pain intervention. To this end, brain-AGE holds promise as an effective biomarker of pain treatment response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.