Objective We used native sensorimotor representations of fingers in a brain-machine interface to achieve immediate online control of individual prosthetic fingers. Approach Using high gamma responses recorded with a high-density ECoG array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: 1) if any finger was moving, and, if so, 2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory (JHU/APL) Modular Prosthetic Limb (MPL). Main Results The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.
To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 seconds for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs.
Tactile sensation is critical for effective object manipulation, but current prosthetic upper limbs make no provision for delivering somesthetic feedback to the user. For individuals who require use of prosthetic limbs, this lack of feedback transforms a mundane task into one that requires extreme concentration and effort. Although vibrotactile motors and sensory substitution devices can be used to convey gross sensations, a direct neural interface is required to provide detailed and intuitive sensory feedback. In light of this, we describe the implementation of a somatosensory prosthesis with which we elicit, through intracortical microstimulation (ICMS), percepts whose magnitude is graded according to the force exerted on the prosthetic finger. Specifically, the prosthesis consists of a sensorized finger, the force output of which is converted into a regime of ICMS delivered to primary somatosensory cortex through chronically implanted multi-electrode arrays. We show that the performance of animals (Rhesus macaques) on a tactile task is equivalent whether stimuli are delivered to the native finger or to the prosthetic finger.
In this article, the authors describe new approaches to synthesize and pattern surfaces with poly[oligo(ethylene glycol) methyl methacrylate] (POEGMA) polymer brushes synthesized by surface-initiated atom transfer radical polymerization. These patterned coatings confer "nonfouling" properties protein and cell resistance-to the surface in a biological milieu. The versatile routes for the synthesis of POEGMA demonstrated here offer clear advantages over other techniques previously used in terms of their simplicity, reliability, and ability to pattern large-area substrates. They also demonstrate that POEGMA polymer brushes can be patterned directly by photolithography, plasma ashing, and reactive ion etching to create patterns at the micro- and nanoscale over large areas with high throughput and repeatability, while preserving the protein and cell resistance of the POEGMA brush.
Intracranial electroencephalographic (iEEG) signals from two human subjects were used to achieve simultaneous neural control of reaching and grasping movements with the Johns Hopkins University Applied Physics Lab (JHU/APL) Modular Prosthetic Limb (MPL), a dexterous robotic prosthetic arm. We performed functional mapping of high gamma activity while the subject made reaching and grasping movements to identify task-selective electrodes. Independent, online control of reaching and grasping was then achieved using high gamma activity from a small subset of electrodes with a model trained on short blocks of reaching and grasping with no further adaptation. Classification accuracy did not decline (p<0.05, one-way ANOVA) over three blocks of testing in either subject. Mean classification accuracy during independently executed overt reach and grasp movements for (Subject 1, Subject 2) were (0.85, 0.81) and (0.80, 0.96) respectively, and during simultaneous execution they were (0.83, 0.88) and (0.58, 0.88) respectively. Our models leveraged knowledge of the subject's individual functional neuroanatomy for reaching and grasping movements, allowing rapid acquisition of control in a time-sensitive clinical setting. We demonstrate the potential feasibility of verifying functionally meaningful iEEG-based control of the MPL prior to chronic implantation, during which additional capabilities of the MPL might be exploited with further training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.