Singlet exciton fission transforms a molecular singlet excited state into two triplet states, each with half the energy of the original singlet. In solar cells, it could potentially double the photocurrent from high-energy photons. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in a portion of the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, we show a peak external quantum efficiency of (109 ± 1)% at wavelength λ = 670 nanometers for a 15-nanometer-thick pentacene film. The corresponding internal quantum efficiency is (160 ± 10)%. Analysis of the magnetic field effect on photocurrent suggests that the triplet yield approaches 200% for pentacene films thicker than 5 nanometers.
We examine the significance of hot exciton dissociation in two archetypical polymer-fullerene blend solar cells. Rather than evolving through a bound charge transfer state, hot processes are proposed to convert excitons directly into free charges. But we find that the internal quantum yields of carrier photogeneration are similar for both excitons and direct excitation of charge transfer states. The internal quantum yield, together with the temperature dependence of the current-voltage characteristics, is consistent with negligible impact from hot exciton dissociation.
Charge-transfer (CT) states, bound combinations of an electron and a hole on separate molecules, play a crucial role in organic optoelectronic devices. We report direct nanoscale imaging of the transport of long-lived CT states in molecular organic donor-acceptor blends, which demonstrates that the bound electron-hole pairs that form the CT states move geminately over distances of 5-10 nm, driven by energetic disorder and diffusion to lower energy sites. Magnetic field dependence reveals a fluctuating exchange splitting, indicative of a variation in electron-hole spacing during diffusion. The results suggest that the electron-hole pair of the CT state undergoes a stretching transport mechanism analogous to an 'inchworm' motion, in contrast to conventional transport of Frenkel excitons. Given the short exciton lifetimes characteristic of bulk heterojunction organic solar cells, this work confirms the potential importance of CT state transport, suggesting that CT states are likely to diffuse farther than Frenkel excitons in many donor-acceptor blends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.