Abstract. The European Photon Imaging Camera (EPIC) consortium has provided the focal plane instruments for the three X-ray mirror systems on XMM-Newton. Two cameras with a reflecting grating spectrometer in the optical path are equipped with MOS type CCDs as focal plane detectors (Turner 2001), the telescope with the full photon flux operates the novel pn-CCD as an imaging X-ray spectrometer. The pn-CCD camera system was developed under the leadership of the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching. The concept of the pn-CCD is described as well as the different operational modes of the camera system. The electrical, mechanical and thermal design of the focal plane and camera is briefly treated. The in-orbit performance is described in terms of energy resolution, quantum efficiency, time resolution, long term stability and charged particle background. Special emphasis is given to the radiation hardening of the devices and the measured and expected degradation due to radiation damage of ionizing particles in the first 9 months of in orbit operation.Key words. XMM-Newton -back illuminated pn-CCDs -radiation hardness -energy resolution -quantum efficiency -particle and flourescence background
We report on a detailed investigation of the electronic phase diagram of FeSe1-x under pressures up to 1.4 GPa by means of ac magnetization and muon-spin rotation. At a pressure 0.8 GPa the nonmagnetic and superconducting FeSe1-x enters a region where static magnetic order is realized above Tc and bulk superconductivity coexists and competes on short length scales with the magnetic order below Tc. For even higher pressures an enhancement of both the magnetic and the superconducting transition temperatures as well as of the corresponding order parameters is observed. These exceptional properties make FeSe1-x to be one of the most interesting superconducting systems investigated extensively at present.
Pressure, together with temperature and magnetic field, is an important thermodynamical parameter in physics. Investigating the response of a compound or of a material to pressure allows to elucidate ground states, investigate their interplay and interactions and determine microscopic parameters. Pressure tuning is used to establish phase diagrams, study phase transitions and identify critical points. Muon spin rotation/relaxation (muSR) is now a standard technique making increasing significant contribution in condensed matter physics, material science research and other fields. In this review, we will discuss specific requirements and challenges to perform muSR experiments under pressure, introduce the high-pressure muon facility at the Paul Scherrer Institute (PSI, Switzerland) and present selected results obtained by combining the sensitivity of the muSR technique with pressure.Comment: Submitted to High Pressure Research. 26 pages, 17 Figure
or most of its history, the superconductivity of strontium ruthenate (Sr 2 RuO 4) (ref. 1) has been understood in terms of an odd-parity two-component order parameter with equal-spin pairing in the RuO 2 planes: p x ± ip y (refs. 2-5). This order parameter is chiral: the Cooper pairs have angular momentum l = ±1. The evidence for chirality comes from the zero-field muon spin relaxation (ZF-μSR) data 6 , observation of a non-zero Kerr rotation below the critical temperature T c (ref. 7) and signs in the junction experiments of domains in the superconducting state 8,9 , while evidence for equal-spin pairing came from the absence of a change in the Knight shift below T c in nuclear magnetic resonance 10 and polarized neutron scattering 11 measurements. The Knight shift is related to the spin susceptibility; in conventional opposite-spin-pairing superconductors, it is suppressed below T c. However, in new measurements, it has been found that the Knight shift is, in fact, suppressed below T c (refs. 12-14), by a magnitude that is unlikely to be reconcilable with equal-spin pairing. This revision has called into question a number of other results on Sr 2 RuO 4. It raises a particular challenge for experiments that indicate chirality, because opposite-spin pairing implies an even-parity momentum-space gap structure. If the order parameter is constrained to be even parity, chiral, and composed of components that are degenerate on the tetragonal lattice of Sr 2 RuO 4 , the only possibility is d xz ± id yz order 15. Under conventional understanding, this is a highly unlikely order parameter because it
We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SµS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon instrument (GPS) which has been for long the workhorse of the µSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers (SiPMs), a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built µSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared to the old GPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.