Normal aging is associated with diminished brain perfusion measured as cerebral blood flow (CBF), but previously it is difficult to accurately measure various aspects of perfusion hemodynamics including: bolus arrival times and delays through small arterioles, expressed as arterial-arteriole transit time. To study hemodynamics in greater detail, volumetric arterial spin labeling MRI with variable postlabeling delays was used together with a distributed, dual-compartment tracer model. The main goal was to determine how CBF and other perfusion hemodynamics vary with aging. Twenty cognitive normal female and 15 male subjects (age: 23-84 years old) were studied at 4 T. Arterial spin labeling measurements were performed in the posterior cingulate cortex, precuneus, and whole brain gray matter. CBF declined with advancing age (P < 0.001). Separately from variations in bolus arrival times, arterial-arteriole transit time increased with advancing age (P < 0.01). Finally, women had overall higher CBF values (P < 0.01) and shorter arterial-arteriole transit time (P < 0.01) than men, regardless of age. The findings imply that CBF and blood transit times are compromised in aging, and these changes together with differences between genders should be taken into account when studying brain perfusion. Magn Reson Med 68:912-922,
Single shot 3D GRASE is less sensitive to field inhomogeneity and susceptibility effects than gradient echo based fast imaging sequences while preserving the acquisition speed. In this study, a continuous arterial spin labeling (CASL) pulse was added prior to the single shot 3D GRASE readout and quantitative perfusion measurements were carried out at 3 T, at rest and during functional activation. The sequence performance was evaluated by comparison with a CASL sequence with EPI readout. It is shown that perfusion measurements using CASL GRASE can be performed safely on humans at 3 T without exceeding the current RF power deposition limits. The maps of resting cerebral blood flow generated from the GRASE images are comparable to those obtained with the 2D EPI readout, albeit with better coverage in the orbitofrontal cortex. The sequence proved effective for functional imaging, yielding time series of images with improved temporal SNR with respect to EPI and group activation maps with increased significance levels. The method was further improved using parallel imaging techniques to provide increased spatial resolution and better separation of the gray-white matter cerebral blood flow maps. Magn Reson Med 54:1241-1247, 2005.
While a number of studies have established that moderate doses of alcohol increase brain perfusion, the time course of such an increase as a function of breath alcohol concentration (BrAC) has not yet been investigated, and studies differ about regional effects. Using arterial spin labeling (ASL) magnetic resonance imaging, we investigated (1) the time course of the perfusion increase during a 15-minute linear increase of BrAC up to 0.6 g/kg followed by a steady exposure of 100 minutes, (2) the regional distribution, (3) a potential gender effect, and (4) the temporal stability of perfusion effects. In 48 young adults who participated in the Dresden longitudinal study on alcohol effects in young adults, we observed (1) a 7% increase of global perfusion as compared with placebo and that perfusion and BrAC are tightly coupled in time, (2) that the increase reaches significance in most regions of the brain, (3) that the effect is stronger in women than in men, and (4) that an acute tolerance effect is not observable on the time scale of 2 hours. Larger studies are needed to investigate the origin and the consequences of the effect, as well as the correlates of inter-subject variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.