Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.
overweight and obesity are worldwide health concerns leading to many physiological disorders. Recent data highlighted their deleterious effects on brain homeostasis and plasticity, but the mechanisms underlying such disruptions are still not well understood. in this study, we developed and characterized a fast and reliable diet-induced overweight (DIO) model in zebrafish, for (1) studying the effects of overfeeding on brain homeostasis and for (2) testing different preventive and/or therapeutic strategies. By overfeeding zebrafish for 4 weeks, we report the disruption of many metabolic parameters reproducing human overweight features including increased body weight, body mass index, fasting blood glucose levels and liver steatosis. Furthermore, DIO fish displayed blood-brain barrier leakage, cerebral oxidative stress, neuroinflammation and decreased neurogenesis. Finally, we investigated the preventive beneficial effects of A. borbonica, an endogenous plant from Reunion island. overnight treatment with A. borbonica aqueous extract during the 4 weeks of overfeeding limited some detrimental central effects of DIO. In conclusion, we established a relevant DIO model in zebrafish demonstrating that overfeeding impairs peripheral and central homeostasis. This work also highlights the preventive protective effects of A. borbonica aqueous extracts in Dio, and opens a way to easily screen drugs aiming at limiting overweight and associated neurological disorders. Obesity and overweight are defined as excessive body weight characterized by body fat accumulation and could be easily estimated by calculating the body mass index (BMI) 1. Both obesity and overweight are among the main health concerns worldwide. Their prevalence is increasing annually in developing and developed countries and has nearly tripled since 1980s according to the World Health Organization (2019). Overweight and obesity are due to an imbalance between energy intake, storage, and expenditure including interactions with hereditary and environmental factors 2-4. They result in numerous metabolic disorders such as dyslipidemia, non-alcoholic fatty liver, hyperglycemia, insulin resistance, and are characterized by chronic inflammation and oxidative stress 5-7. These pathologies lead to many physiological disorders such as cardiovascular complications as well as the development of type 2 diabetes and contribute to increased morbidities 7,8. In addition to impair peripheral metabolism and homeostasis, overweight and obesity could have a negative impact on central nervous system (CNS) homeostasis, leading to cognitive impairments and dementia 9. Such cognitive defects have been reported in many animal models such as in high fat diet (HFD)-treated rodents displaying hippocampal-dependent cognitive impairments 10,11. Among factors contributing to these cognitive dysfunctions, inflammatory and oxidative stress appear as key players leading to blood-brain barrier (BBB) leakage through decreased expression of tight junction proteins in the hippocampus 12. Other studi...
Background High-density lipoproteins exert pleiotropic effects including antiinflammatory, antiapoptotic, and lipopolysaccharide-neutralizing properties. The authors assessed the effects of reconstituted high-density lipoproteins (CSL-111) intravenous injection in different models of sepsis. Methods Ten-week-old C57BL/6 mice were subjected to sepsis by cecal ligation and puncture or intraperitoneal injection of Escherichia coli or Pseudomonas aeruginosa pneumonia. CSL-111 or saline solution was administrated 2 h after the sepsis. Primary outcome was survival. Secondary outcomes were plasma cell-free DNA and cytokine concentrations, histology, bacterial count, and biodistribution. Results Compared with saline, CSL-111 improved survival in cecal ligation and puncture and intraperitoneal models (13 of 16 [81%] survival rate vs. 6 of 16 [38%] in the cecal ligation and puncture model; P = 0.011; 4 of 10 [40%] vs. 0 of 10 [0%] in the intraperitoneal model; P = 0.011). Cell-free DNA concentration was lower in CSL-111 relative to saline groups (68 [24 to 123] pg/ml vs. 351 [333 to 683] pg/ml; P < 0.001). Mice injected with CSL-111 presented a decreased bacterial count at 24 h after the cecal ligation and puncture model both in plasma (200 [28 to 2,302] vs. 2,500 [953 to 3,636] colony-forming unit/ml; P = 0.021) and in the liver (1,359 [360 to 1,648] vs. 1,808 [1,464 to 2,720] colony-forming unit/ml; P = 0.031). In the pneumonia model, fewer bacteria accumulated in liver and lung of the CSL-111 group. CSL-111–injected mice had also less lung inflammation versus saline mice (CD68+ to total cells ratio: saline, 0.24 [0.22 to 0.27]; CSL-111, 0.07 [0.01 to 0.09]; P < 0.01). In all models, no difference was found for cytokine concentration. 111Indium bacterial labeling underlined a potential hepatic bacterial clearance possibly promoted by high-density lipoprotein uptake. Conclusions CSL-111 infusion improved survival in different experimental mouse models of sepsis. It reduced inflammation in both plasma and organs and decreased bacterial count. These results emphasized the key role for high-density lipoproteins in endothelial and organ protection, but also in lipopolysaccharide/bacteria clearance. This suggests an opportunity to explore the therapeutic potential of high-density lipoproteins in septic conditions. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.