Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency <0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency <0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24–3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-014-1298-7) contains supplementary material, which is available to authorized users.
Objective:We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression.Methods:Baseline plasma NfL concentrations were measured with Simoa in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN and MAPT mutation carriers and non-carriers from the same families were classified by disease severity [asymptomatic, prodromal and full phenotype] using the CDR® Dementia Staging Instrument plus behavior and language domains from the National Alzheimer’s Disease Coordinating Center FTLD module (CDR®+NACC-FTLD). Linear mixed effect models related NfL to clinical variables.Results:In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to non-progressors (original: 11.4 ± 7 pg/mL vs. 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs. 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR®+NACC-FTLD sum of boxes scores, neuropsychological function and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers.Conclusions:Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression, and is a potential tool to select participants for prevention clinical trials.Classification of evidence:This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.
Highlights Progressive and differential atrophy patterns are seen at presymptomatic stages across genetic groups. Very early presymptomatic brain changes are detectable only by looking at small regions. C9orf72 expansion carriers show the earliest and most widespread changes (cortex, pulvinar, cerebellum). MAPT mutation carriers show early differences in the dorsolateral temporal cortex, amygdala, and hippocampus. Late presymptomatic changes occur in GRN mutation carriers in dorsolateral prefrontal cortex, insula, and presubiculum.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.