Our understanding of the physical principles organizing the genome in the nucleus is limited by the lack of tools to directly exert and measure forces on interphase chromosomes in vivo and probe their material nature. Here, we introduce an approach to actively manipulate a genomic locus using controlled magnetic forces inside the nucleus of a living human cell. We observed viscoelastic displacements over micrometers within minutes in response to near-piconewton forces, which are consistent with a Rouse polymer model. Our results highlight the fluidity of chromatin, with a moderate contribution of the surrounding material, revealing minor roles for cross-links and topological effects and challenging the view that interphase chromatin is a gel-like material. Our technology opens avenues for future research in areas from chromosome mechanics to genome functions.
Background:Loss of CD9 expression has been correlated with a higher motility and metastatic potential of tumour cells originating from different organs. However, the mechanism underlying this loss is not yet understood.Methods:We produced a truncated form of partner 1 of CD9 (CD9P-1), GS-168AT2, and developed a new monoclonal antibody directed towards the latter. We measured the expression of CD9 and CD9P-1 in human lung tumours (hLTs), and monitored the level of CD9 in NCI-H460, in vitro and in vivo, in the presence and absence of GS-168AT2.Results:Loss of CD9 is inversely related to the expression of CD9P-1, which correlates with the metastatic status of hLT (n=55). In vitro, GS-168AT2 is rapidly internalised and degraded at both the membrane and cytoplasm of NCI-H460, and this correlates with the association of GS-168AT2 with both CD9 and CD81. Intraperitoneal injections of GS-168AT2 in NCI-H460-xenografted Nude mice led to drastic inhibition of tumour growth, as well as to the downregulation of CD9, but not of CD81, in the tumour core.Conclusion:These findings show for the first time that CD9P-1 expression positively correlates with the metastatic status of hLT, and that the upregulation of CD9P-1 expression could be one of the mechanisms underlying the loss of CD9 in solid tumours. Our study also reveals that, under certain conditions, loss of CD9 could be a tumour growth-limiting phenomenon rather than a tumour growth-promoting one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.