The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff.
PurposeMore than 6,500 megavoltage teletherapy units are needed worldwide, many in low-resource settings. Cobalt-60 units or linear accelerators (linacs) can fill this need. We have evaluated machine performance on the basis of patient throughput to provide insight into machine viability under various conditions in such a way that conclusions can be generalized to a vast array of clinical scenarios.Materials and MethodsData from patient treatment plans, peer-reviewed studies, and international organizations were combined to assess the relative patient throughput of linacs and cobalt-60 units that deliver radiotherapy with standard techniques under various power and maintenance support conditions. Data concerning the frequency and duration of power outages and downtime characteristics of the machines were used to model teletherapy operation in low-resource settings.ResultsModeled average daily throughput was decreased for linacs because of lack of power infrastructure and for cobalt-60 units because of limited and decaying source strength. For conformal radiotherapy delivered with multileaf collimators, average daily patient throughput over 8 years of operation was equal for cobalt-60 units and linacs when an average of 1.83 hours of power outage occurred per 10-hour working day. Relative to conformal treatments delivered with multileaf collimators on the respective machines, the use of advanced techniques on linacs decreased throughput between 20% and 32% and, for cobalt machines, the need to manually place blocks reduced throughput up to 37%.ConclusionOur patient throughput data indicate that cobalt-60 units are generally best suited for implementation when machine operation might be 70% or less of total operable time because of power outages or mechanical repair. However, each implementation scenario is unique and requires consideration of all variables affecting implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.