Affiliations: For a full list of the authors' affiliations please refer to the Acknowledgements. ABSTRACT This European Respiratory Society (ERS) statement provides a comprehensive overview on physical activity in patients with chronic obstructive pulmonary disease (COPD). A multidisciplinary Task Force of experts representing the ERS Scientific Group 01.02 ''Rehabilitation and Chronic Care'' determined the overall scope of this statement through consensus. Focused literature reviews were conducted in key topic areas and the final content of this Statement was agreed upon by all members.The current knowledge regarding physical activity in COPD is presented, including the definition of physical activity, the consequences of physical inactivity on lung function decline and COPD incidence, physical activity assessment, prevalence of physical inactivity in COPD, clinical correlates of physical activity, effects of physical inactivity on hospitalisations and mortality, and treatment strategies to improve physical activity in patients with COPD.This Task Force identified multiple major areas of research that need to be addressed further in the coming years. These include, but are not limited to, the disease-modifying potential of increased physical activity, and to further understand how improvements in exercise capacity, dyspnoea and self-efficacy following interventions may translate into increased physical activity.The Task Force recommends that this ERS statement should be reviewed periodically (e.g. every 5-8 years).@ERSpublications An official ERS statement providing a comprehensive overview on physical activity in patients with COPD http://ow.ly/C6v78
Chronic CO exposure promotes a pathological phenotype of cardiomyocytes in the absence of underlying cardiomyopathy. The less severe phenotype in vivo suggests a role for compensatory mechanisms. Arrhythmia propensity may derive from intracellular Ca(2+) overload.
Arrhythmias following cardiac stress are a key predictor of death in healthy population. Carbon monoxide (CO) is a ubiquitous pollutant promoting oxidative stress and associated with hospitalization for cardiovascular disease and cardiac mortality. We investigated the effect of chronic CO exposure on the occurrence of arrhythmic events after a cardiac stress test and the possible involvement of related oxidative stress. Wistar rats exposed chronically (4 weeks) to sustained urban CO pollution presented more arrhythmic events than controls during recovery after cardiac challenge with isoprenaline in vivo. Sudden death occurred in 22% of CO-exposed rats versus 0% for controls. Malondialdehyde (MDA), an end-product of lipid peroxidation, was increased in left ventricular tissue of CO-exposed rats. Cardiomyocytes isolated from CO-exposed rats showed higher reactive oxygen species (ROS) production (measured with MitoSox Red dye), higher diastolic Ca(2+) resulting from SR calcium leak and an higher occurrence of irregular Ca(2+) transients (measured with Indo-1) in comparison to control cells after a high pacing sequence. Acute treatment with a ROS scavenger (N-acetylcysteine, 20 mmol/L, 1 h) prevented this sequence of alterations and decreased the number of arrhythmic cells following high pacing. Chronic CO exposure promotes oxidative stress that alters Ca(2+) homeostasis (through RYR2 and SERCA defects) and thereby mediates the triggering of ventricular arrhythmia after cardiac stress that can lead to sudden death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.