Background— Orthopedic strain and radiation exposure are recognized risk factors in personnel staff performing fluoroscopically guided cardiovascular procedures. However, the potential occupational health effects are still unclear. The purpose of this study was to examine the prevalence of health problems among personnel staff working in interventional cardiology/cardiac electrophysiology and correlate them with the length of occupational radiation exposure. Methods and Results— We used a self-administered questionnaire to collect demographic information, work-related information, lifestyle-confounding factors, all current medications, and health status. A total number of 746 questionnaires were properly filled comprising 466 exposed staff (281 males; 44±9 years) and 280 unexposed subjects (179 males; 43±7years). Exposed personnel included 218 interventional cardiologists and electrophysiologists (168 males; 46±9 years); 191 nurses (76 males; 42±7 years), and 57 technicians (37 males; 40±12 years) working for a median of 10 years (quartiles: 5–24 years). Skin lesions ( P =0.002), orthopedic illness ( P <0.001), cataract ( P =0.003), hypertension ( P =0.02), and hypercholesterolemia ( P <0.001) were all significantly higher in exposed versus nonexposed group, with a clear gradient unfavorable for physicians over technicians and nurses and for longer history of work (>16 years). In highly exposed physicians, adjusted odds ratio ranged from 1.7 for hypertension (95% confidence interval: 1–3; P =0.05), 2.9 for hypercholesterolemia (95% confidence interval: 1–5; P =0.004), 4.5 for cancer (95% confidence interval: 0.9–25; P =0.06), to 9 for cataract (95% confidence interval: 2–41; P =0.004). Conclusions— Health problems are more frequently observed in workers performing fluoroscopically guided cardiovascular procedures than in unexposed controls, raising the need to spread the culture of safety in the cath laboratory.
AimsAim of this study was to compare a minimally fluoroscopic radiofrequency catheter ablation with conventional fluoroscopy-guided ablation for supraventricular tachycardias (SVTs) in terms of ionizing radiation exposure for patient and operator and to estimate patients' lifetime attributable risks associated with such exposure.Methods and resultsWe performed a prospective, multicentre, randomized controlled trial in six electrophysiology (EP) laboratories in Italy. A total of 262 patients undergoing EP studies for SVT were randomized to perform a minimally fluoroscopic approach (MFA) procedure with the EnSiteTMNavXTM navigation system or a conventional approach (ConvA) procedure. The MFA was associated with a significant reduction in patients' radiation dose (0 mSv, iqr 0–0.08 vs. 8.87 mSv, iqr 3.67–22.01; P < 0.00001), total fluoroscopy time (0 s, iqr 0–12 vs. 859 s, iqr 545–1346; P < 0.00001), and operator radiation dose (1.55 vs. 25.33 µS per procedure; P < 0.001). In the MFA group, X-ray was not used at all in 72% (96/134) of cases. The acute success and complication rates were not different between the two groups (P = ns). The reduction in patients' exposure shows a 96% reduction in the estimated risks of cancer incidence and mortality and an important reduction in estimated years of life lost and years of life affected. Based on economic considerations, the benefits of MFA for patients and professionals are likely to justify its additional costs.ConclusionThis is the first multicentre randomized trial showing that a MFA in the ablation of SVTs dramatically reduces patients' exposure, risks of cancer incidence and mortality, and years of life affected and lost, keeping safety and efficacy.Trial registrationclinicaltrials.gov Identifier: NCT01132274.
Three automatic approaches to ventricular repolarisation duration measurement (R-Tapex, R-T(end threshold) and R-T(end fitting) methods) are compared on computer-generated and real ECG signals, in relation to their reliability in the presence of the most common electrocardiographic artefacts (i.e. additive broadband noise and additive and multiplicative periodical disturbances). Simulations permit the evaluation of the amount of R-T beat-to-beat variability induced by the artefacts. The R-T(end threshold) method performs better than the R-T(end fitting) one, and, hence, the latter should be used with caution when R-T(end) variability is addressed. Whereas the R-Tapex method is more robust with regard to broadband noise than the R-T(end threshold) one, the reverse situation is observed in the presence of periodical amplitude modulations. A high level of broadband noise dose not prevent the detection of the central frequency of underlying R-T periodical changes. Comparison between the power spectra of the beat-to-beat R-T variability series obtained from three orthogonal ECG leads (X,Y,Z) is used to assess the amount of real and artefactual variability in 13 normal subjects at rest. The R-Tapex series displays rhythms at high frequency (HF) with a percentage power on the Z lead (57.1 +/- 4.9) greater than that on the X and Y leads (41.9 +/- 4.6 and 46.1 +/- 4.9, respectively), probably because of respiratory-related artefacts affecting the Z lead more remarkably. More uniform HF power distributions over X,Y,Z leads are observed in the R-T(end threshold) series (31.8 +/- 3.8, 39.2 +/- 4.1 and 35.1 +/- 4.2, respectively), thus suggesting minor sensitivity of the R-T(end threshold) measure to respiratory-related artefacts.
The interactions between systolic arterial pressure (SAP) and R-R interval (RR) fluctuations after acute myocardial infarction (AMI) were investigated by measures of synchronization separating the feedback from the feedforward control and capturing both linear and nonlinear contributions. The causal synchronization, evaluating the ability of RR to predict SAP (chi(s/t)) or vice versa (chi(t/s)), and the global synchronization (chi) were estimated at rest and after head-up tilt in 35 post-AMI patients, 20 young and 12 old. Significance and nonlinearity of the coupling were assessed by surrogate data analysis. Tilting increased the number of young subjects in which RR-SAP link was significant (from 17 to 19) and linear (from 11 to 18). In AMI, both significance and linearity of the coupling were low at rest (26 significant and 24 nonlinear) and further reduced after tilt (17 significant and 16 nonlinear). Old subjects showed a partial recovery of linearity after tilt (rest: 1 linear of 7 significant; tilt: 5 linear of 8 significant). In young subjects, the causal synchronization indexes were balanced and increased from rest (chi(t/s) = 0.072 +/- 0.037 and chi(s/t) = 0.054 +/- 0.028) to tilt (chi(t/s) = 0.125 +/- 0.071 and chi(s/t) = 0.108 +/- 0.053). On the contrary, in old subjects and AMI patients, the feedforward was prevalent to the feedback coupling at rest (old: chi(t/s) = 0.041 +/- 0.023 and chi(s/t) = 0.069 +/- 0.042; AMI: chi(t/s) = 0.050 +/- 0.030 and chi(s/t) = 0.089 +/- 0.053). Tilting blunted the unbalance in old subjects (chi(t/s) = 0.065 +/- 0.052 and chi(s/t) = 0.069 +/- 0.044) but not in AMI patients (chi(t/s) = 0.040 +/- 0.019 and chi(s/t) = 0.060 +/- 0.040). Thus, after AMI, nonlinear mechanisms are elicited in RR-SAP interactions. Furthermore, the neural regulation of the cardiovascular system resulted in imbalance as a consequence of impaired feedback and enhanced feedforward control mechanisms.
Although only a minority of patients admitted as an emergency are referred to the syncope unit, overall management is substantially affected. It is speculated that the use of a standardized approach, such as that typically adopted in the syncope unit, is able to influence overall practice in the hospital.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.