Background Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. Methods Using case–control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus–specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. Results A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion–deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. Conclusions A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.)
Objective. To test the association of osteopontin (OPN) polymorphisms with systemic lupus erythematosus (SLE).Methods. . These effects were independent of each other, i.e., not a consequence of linkage disequilibrium between the 2 alleles. The risk associated with a double dose of susceptibility alleles at both SNPs was 3.8-fold higher (95% CI 2.0-7.4) relative to the complete absence of susceptibility alleles. With regard to individual clinical and immunologic features, a significant association was seen between lymphadenopathy and ؊156 genotypes (overall P ؍ 0.0011, P corr ؍ 0.046). A significantly increased OPN serum level was detected in healthy individuals carrying ؉1239C (P ؍ 0.002), which is indicative of an association between the SLE susceptibility allele and OPN levels. Conclusion. These data suggest the independent effect of a promoter (؊156) and a 3 -untranslated region (؉1239) SNP in SLE susceptibility. We can speculate that these sequence variants (or others in perfect linkage disequilibrium) create a predisposition to high production of OPN, and that this in turn may confer susceptibility to SLE.Systemic lupus erythematosus (SLE) is an autoimmune disease with a multifactorial etiology that is characterized by impaired T cell responses and dysregulation of B cell activation, leading to B cell hyperactivity and production of autoantibodies. Several lines of evi-
Introduction We aimed to replicate association of newly identified systemic lupus erythematosus (SLE) loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.