Background: The burden of COVID-19 was extremely severe in Northern Italy, an area characterized by high concentrations of particulate matter (PM), which is known to negatively affect human health. Consistently with evidence already available for other viruses, we initially hypothesized the possibility of SARS-CoV-2 presence on PM, and we performed a first experiment specifically aimed at confirming or excluding this research hyphotesys. Methods: We have collected 34 PM10 samples in Bergamo area (the epicenter of the Italian COVID-19 epidemic) by using two air samplers over a continuous 3-weeks period. Filters were properly stored and underwent RNA extraction and amplification according to WHO protocols in two parallel blind analyses performed by two different authorized laboratories. Up to three highly specific molecular marker genes (E, N, and RdRP) were used to test the presence of SARS-CoV-2 RNA on particulate matter. Results: The first test showed positive results for gene E in 15 out of 16 samples, simultaneously displaying positivity also for RdRP gene in 4 samples. The second blind test got 5 additional positive results for at least one of the three marker genes. Overall, we tested 34 RNA extractions for the E, N and RdRP genes, reporting 20 positive results for at least one of the three marker genes, with positivity separately confirmed for all the three markers. Control tests to exclude false positivities were successfully accomplished. Conclusion: This is the first evidence that SARS-CoV-2 RNA can be present on PM, thus suggesting a possible use as indicator of epidemic recurrence.
A number of nations were forced to declare a total shutdown due to COVID-19 infection, as extreme measure to cope with dramatic impact of the pandemic, with remarkable consequences both in terms of negative health outcomes and economic loses. However, in many countries a “Phase-2” is approaching and many activities will re-open soon, although with some differences depending on the severity of the outbreak experienced and SARS-COV-2 estimated diffusion in the general population. At the present, possible relapses of the epidemic cannot be excluded until effective vaccines or immunoprophylaxis with human recombinant antibodies will be properly set up and commercialized. COVD-19-related quarantines have triggered serious social challenges, so that decision makers are concerned about the risk of wasting all the sacrifices imposed to the people in these months of quarantine. The availability of possible early predictive indicators of future epidemic relapses would be very useful for public health purposes, and could potentially prevent the suspension of entire national economic systems. On 16 March, a Position Paper launched by the Italian Society of Environmental Medicine (SIMA) hypothesized for the first time a possible link between the dramatic impact of COVID-19 outbreak in Northern Italy and the high concentrations of particulate matter (PM10 and PM2.5) that characterize this area, along with its well-known specific climatic conditions. Thereafter, a survey carried out in the U.S. by the Harvard School of Public Health suggested a strong association between increases in particulate matter concentration and mortality rates due to COVID-19. The presence of SARS-COV-2 RNA on the particulate matter of Bergamo, which is not far from Milan and represents the epicenter of the Italian epidemic, seems to confirm (at least in case of atmospheric stability and high PM concentrations, as it usually occurs in Northern Italy) that the virus can create clusters with the particles and be carried and detected on PM10. Although no assumptions can be made concerning the link between this first experimental finding and COVID-19 outbreak progression or severity, the presence of SARS-COV-2 RNA on PM10 of outdoor air samples in any city of the world could represent a potential early indicator of COVID-19 diffusion. Searching for the viral genome on particulate matter could therefore be explored among the possible strategies for adopting all the necessary preventive measures before future epidemics start.
Lyme disease is caused by genetically divergent spirochetes, including 3 pathogenic genospecies: Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii. Serodiagnosis is complicated by this genetic diversity. A synthetic peptide (C(6)), based on the 26-mer invariable region (IR(6)) of the variable surface antigen of B. burgdorferi (VlsE), was used as ELISA antigen, to test serum samples collected from mice experimentally infected with the 3 genospecies and from European patients with Lyme disease. Regardless of the infecting strains, mice produced a strong antibody response to C(6), which indicates that IR(6) is antigenically conserved among the pathogenic genospecies. Twenty of 23 patients with culture-confirmed erythema migrans had a detectable antibody response to C(6). A sensitivity of 95.2% was achieved, with serum samples collected from patients with well-defined acrodermatitis chronica atrophicans. Fourteen of 20 patients with symptoms of late Lyme disease also had a positive anti-IR(6) ELISA. Thus, it is possible that C(6) may be used to serodiagnose Lyme disease universally.
Italy is considered at low incidence of tick-borne encephalitis (TBE), and the occurrence of human cases of TBE appears to be geographically restricted to the north east of the country. However, most information to date derives from case series, with no systematic data collection. To estimate incidence rates (IR) and spatial distribution of TBE cases, we conducted a retrospective study in north-eastern Italy. Data were collected through the infectious disease units and public health districts of three regions (Friuli Venezia Giulia, Trentino Alto Adige and Veneto) between 2000 and 2013. Overall, 367 cases were identified (IR: 0.38/100,000). The cases' median age was 56 years and 257 (70%) were male. Central nervous system involvement was reported in 307 cases (84%). Annual fluctuations in case numbers occurred, with peaks in 2006 and in 2013, when 44 and 42 cases were respectively observed. A strong seasonality effect was noted, with the highest number of cases in July. In terms of geographical location, three main endemic foci with high TBE IR (>10/100,000) were identified in three provinces, namely Belluno (Veneto region), Udine (Friuli Venezia Giulia) and Trento (Trentino Alto-Adige). When investigating the whole study area in terms of altitude, the IR between 400 and 600 m was greater (2.41/100,000) than at other altitudes (p<0.01). In conclusion, the incidence of TBE in Italy is relatively low, even considering only the three known affected regions. However, three endemic foci at high risk were identified. In these areas, where the risk of TBEV infection is likely high, more active offer of TBE vaccination could be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.