Type 2 cytokines (IL-4, IL-5, and IL-13) play a pivotal role in helminthic infection and allergic disorders. CD4+ T cells which produce type 2 cytokines can be generated via IL-4-dependent and -independent pathways. Although the IL-4-dependent pathway is well documented, factors that drive IL-4-independent Th2 cell differentiation remain obscure. We report here that the new cytokine IL-33, in the presence of Ag, polarizes murine and human naive CD4+ T cells into a population of T cells which produce mainly IL-5 but not IL-4. This polarization requires IL-1R-related molecule and MyD88 but not IL-4 or STAT6. The IL-33-induced T cell differentiation is also dependent on the phosphorylation of MAPKs and NF-κB but not the induction of GATA3 or T-bet. In vivo, ST2−/− mice developed attenuated airway inflammation and IL-5 production in a murine model of asthma. Conversely, IL-33 administration induced the IL-5-producing T cells and exacerbated allergen-induced airway inflammation in wild-type as well as IL-4−/− mice. Finally, adoptive transfer of IL-33-polarized IL-5+IL-4−T cells triggered airway inflammation in naive IL-4−/− mice. Thus, we demonstrate here that, in the presence of Ag, IL-33 induces IL-5-producing T cells and promotes airway inflammation independent of IL-4.
The family Poxviridae is a family of large, linear, doublestranded DNA viruses that carry out their entire life cycle within the cytoplasmic compartment of infected cells. Vaccinia virus (VACV) is a prototypical member of the genus Orthopoxvirus, which also includes the closely related cowpox virus (CPXV) (12, 52). The genomes of these viruses are approximately 200 kbp in length, with a coding capacity of approximately 200 genes. The genes involved in virus-host interactions are situated at both ends of the genome and are associated with the evasion of host immune defenses (1). These evasion mechanisms operate mainly extracellularly. For example, the secretion of soluble cytokine and chemokine receptor homologues blocks the receptor recognition by intercepting the cognate cytokine/chemokine in the extracellular environment.This mechanism facilitates viral attachment and entry into cells (1, 70). Therefore, decoy receptors for alpha interferon (IFN-␣), IFN-, IFN-␥, and tumor necrosis factor alpha play an important immunomodulatory role by affecting both the host antiviral and apoptotic responses.To counteract the host proapoptotic response, poxviruses have developed a number of antiapoptotic strategies, including the inhibition of apoptotic signals triggered by the extrinsic pathway (those mediated by death receptors such as tumor necrosis factor and Fas ligand) or the intrinsic pathway (mediated by the mitochondria and triggered upon viral infection) (1,25,70,74). Many studies previously identified viral inhibitors that block specific steps of the intrinsic pathway. These include the VACV-encoded E3L, F1L, and N1L genes and the myxoma virus (MYXV)-encoded M11L gene, which block cytochrome c release (14,20,34,39,45,75,90), and the CPXVencoded cytokine response modifier gene (CrmA) as well as the VACV-encoded SPI-2 gene, which inhibits both caspase-1 and caspase-8 (25,58,61,74).An emerging body of evidence has also highlighted the pivotal role played by intracellular signaling pathways in Orthopoxvirus biology (18,48,92). We and others have shown that poxvirus manipulation of signaling pathways can be virus specific. For example, while both VACV and CPXV stimulate the
Gout is a disease characterized by the deposition of monosodium urate (MSU) crystals in the joints. Continuous gout episodes may lead to unresolved inflammatory responses and tissue damage. We investigated the effects of a high‐fiber diet and acetate, a short‐chain fatty acid (SCFA) resulting from the metabolism of fiber by gut microbiota, on the inflammatory response in an experimental model of gout in mice. Injection of MSU crystals into the knee joint of mice induced neutrophil influx and inflammatory hypernociception. The onset of inflammatory response induced by MSU crystals was not altered in animals given a high‐fiber diet, but the high‐fiber diet induced faster resolution of the inflammatory response. Similar results were obtained in animals given the SCFA acetate. Acetate was effective, even when given after injection of MSU crystals at the peak of the inflammatory response and induced caspase‐dependent apoptosis of neutrophils that accounted for the resolution of inflammation. Resolution of neutrophilic inflammation was associated with decreased NF‐κB activity and enhanced production of anti‐inflammatory mediators, including IL‐10, TGF‐β, and annexin A1. Acetate treatment or intake of a high‐fiber diet enhanced efferocytosis, an effect also observed in vitro with neutrophils treated with acetate. In conclusion, a high‐fiber diet or one of its metabolic products, acetate, controls the inflammatory response to MSU crystals by favoring the resolution of the inflammatory response. Our studies suggest that what we eat plays a determinant role in our capacity to fine tune the inflammatory response. Introduction
Intestinal damage and severe diarrhea are serious side effects of cancer chemotherapy and constrain the usage of most such therapies. Here we show that IL-33 mediates the severe intestinal mucositis in mice treated with Irinotecan (CPT-11), a commonly used cancer chemotherapeutic agent. Systemic CPT-11 administration led to severe mucosal damage, diarrhea and body weight loss concomitant with the induction of IL-33 in the small intestine (SI). This mucositis was markedly reduced in mice deficient in the IL-33R (ST2−/−). Moreover, recombinant IL-33 exacerbated the CPT-11-induced mucositis, whereas IL-33 blockade with anti-IL-33 antibody or soluble ST2 markedly attenuated the disease. CPT-11-treatment increased neutrophil accumulation in the SI and adhesion to mesenteric veins. Supernatants from SI explants treated with CPT-11 enhanced transmigration of neutrophils in vitro in an IL-33, CXCL1/2 and CXCR2-dependent manner. Importantly, IL-33 blockade reduced mucositis and enabled prolonged CPT-11 treatment of ectopic CT26 colon carcinoma leading to a beneficial outcome of the chemotherapy. These results suggest that inhibition of the IL-33/ST2 pathway may represent a novel approach to limit mucositis and thus improve the effectiveness of chemotherapy.
a b s t r a c tEosinophils are major players in inflammatory allergic diseases such as asthma, hay fever and eczema. Here we show that the cyclin-dependent kinase inhibitor (CDKi) R-roscovitine efficiently and rapidly induces human eosinophil apoptosis using flow cytometric analysis of annexin-V/propidium iodide staining, morphological analysis by light microscopy, transmission electron microscopy and Western immunoblotting for caspase-3 cleavage. We further dissect these observations by demonstrating that eosinophils treated with R-roscovitine lose mitochondrial membrane potential and the key survival protein Mcl-1 is down-regulated. This novel finding of efficacious induction of eosinophil apoptosis by CDKi drugs has potential as a strategy for driving resolution of eosinophilic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.