Configuring and maintaining a firewall configuration is notoriously hard. Policies are written in low-level, platform-specific languages where firewall rules are inspected and enforced along non trivial control flow paths. Further difficulties arise from Network Address Translation (NAT), since filters must be implemented with addresses translations in mind. In this work, we study the problem of decompiling a real firewall configuration into an abstract specification. This abstract version throws the low-level details away by exposing the meaning of the configuration, i.e., the allowed connections with possible address translations. The generated specification makes it easier for system administrators to check if: (i) the intended security policy is actually implemented;(ii) two configurations are equivalent; (iii) updates have the desired effect on the firewall behavior. The peculiarity of our approach is that is independent of the specific target firewall system and language. This independence is obtained through a generic intermediate language that provides the typical features of real configuration languages and that separates the specification of the rulesets, determining the destiny of packets, from the specification of the platform-dependent steps needed to elaborate packets. We present a tool that decompiles real firewall configurations from different systems into this intermediate language and uses the Z3 solver to synthesize the abstract specification that succinctly represents the firewall behavior and the NAT. Tests on real configurations show that the tool is effective: it synthesizes complex policies in a matter of minutes and, and it answers to specific queries in just a few seconds. The tool can also point out policy differences before and after configuration updates in a simple, tabular form.
Enforcing protection at the browser side has recently become a popular approach for securing web authentication. Though interesting, existing attempts in the literature only address specific classes of attacks, and thus fall short of providing robust foundations to reason on web authentication security. In this paper we provide such foundations, by introducing a novel notion of web session integrity, which allows us to capture many existing attacks and spot some new ones. We then propose FF+, a security-enhanced model of a web browser that provides a full-fledged and provably sound enforcement of web session integrity. We leverage our theory to develop SessInt, a prototype extension for Google Chrome implementing the security mechanisms formalized in FF+. SessInt provides a level of security very close to FF+, while keeping an eye at usability and user experience
No abstract
Firewalls are essential for managing and protecting computer networks. They permit specifying which packets are allowed to enter a network, and also how these packets are modified by IP address translation and port redirection. Configuring a firewall is notoriously hard, and one of the reasons is that it requires using low level, hard to interpret, configuration languages. Equally difficult are policy maintenance and refactoring, as well as porting a configuration from one firewall system to another. To address these issues we introduce a pipeline that assists system administrators in checking if: (i) the intended security policy is actually implemented by a configuration; (ii) two configurations are equivalent; (iii) updates have the desired effect on the firewall behavior; (iv) there are useless or redundant rules; additionally, an administrator can (v) transcompile a configuration into an equivalent one in a different language; and (vi) maintain a configuration using a generic, declarative language that can be compiled into different target languages. The pipeline is based on IFCL, an intermediate firewall language equipped with a formal semantics, and it is implemented in an open source tool called FWS. In particular, the first stage decompiles real firewall configurations for iptables, ipfw, pf and (a subset of) Cisco IOS into IFCL. The second one transforms an IFCL configuration into a logical predicate and uses the Z3 solver to synthesize an abstract specification that succinctly represents the firewall behavior. System administrators can use FWS to analyze the firewall by posing SQL-like queries, and update the configuration to meet the desired security requirements. Finally, the last stage allows for maintaining a configuration by acting directly on its abstract specification and then compiling it to the chosen target language. Tests on real firewall configurations show that FWS can be fruitfully used in real-world scenarios.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.