BackgroundReunion Island regularly faces outbreaks of epizootic haemorrhagic disease (EHD) and bluetongue (BT), two viral diseases transmitted by haematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) to ruminants. To date, five species of Culicoides are recorded in Reunion Island in which the first two are proven vector species: Culicoides bolitinos, C. imicola, C. enderleini, C. grahamii and C. kibatiensis. Meteorological and environmental factors can severely constrain Culicoides populations and activities and thereby affect dispersion and intensity of transmission of Culicoides-borne viruses. The aim of this study was to describe and predict the temporal dynamics of all Culicoides species present in Reunion Island.MethodsBetween 2016 and 2018, 55 biweekly Culicoides catches using Onderstepoort Veterinary Institute traps were set up in 11 sites. A hurdle model (i.e. a presence/absence model combined with an abundance model) was developed for each species in order to determine meteorological and environmental drivers of presence and abundance of Culicoides.ResultsAbundance displayed very strong heterogeneity between sites. Average Culicoides catch per site per night ranged from 4 to 45,875 individuals. Culicoides imicola was dominant at low altitude and C. kibatiensis at high altitude. A marked seasonality was observed for the three other species with annual variations. Twelve groups of variables were tested. It was found that presence and/or abundance of all five Culicoides species were driven by common parameters: rain, temperature, vegetation index, forested environment and host density. Other parameters such as wind speed and farm building opening size governed abundance level of some species. In addition, Culicoides populations were also affected by meteorological parameters and/or vegetation index with different lags of time, suggesting an impact on immature stages. Taking into account all the parameters for the final hurdle model, the error rate by Normalized Root mean Square Error ranged from 4.4 to 8.5%.ConclusionsTo our knowledge, this is the first study to model Culicoides population dynamics in Reunion Island. In the absence of vaccination and vector control strategies, determining periods of high abundance of Culicoides is a crucial first step towards identifying periods at high risk of transmission for the two economically important viruses they transmit.
African swine fever (ASF) is a lethal hemorrhagic disease in domestic pigs and wild suids caused by African swine fever virus (ASFV), which threatens the swine industry globally. In its native African enzootic foci, ASFV is naturally circulating between soft ticks of the genus Ornithodoros, especially in the O. moubata group, and wild reservoir suids, such as warthogs (Phacochoerus spp.) that are bitten by infected soft ticks inhabiting their burrows. While the ability of some Afrotropical soft ticks to transmit and maintain ASFV is well established, the vector status of Palearctic soft tick species for ASFV strains currently circulating in Eurasia remains largely unknown. For example, the Iberian soft tick O. erraticus is a known vector and reservoir of ASFV, but its ability to transmit different ASFV strains has not been assessed since ASF re-emerged in Europe in 2007. Little is known about vector competence for ASFV in other species, such as O. verrucosus, which occurs in southern parts of Eastern Europe, including Ukraine and parts of Russia, and in the Caucasus. Therefore, we conducted transmission trials with two Palearctic soft tick species, O. erraticus and O. verrucosus, and the Afrotropical species O. moubata. We tested the ability of ticks to transmit virulent ASFV strains, including one of direct African origin (Liv13/33), and three from Eurasia that had been involved in previous (OurT88/1), and the current epizooties (Georgia2007/1 and Ukr12/Zapo). Our experimental results showed that O. moubata was able to transmit the African and Eurasian ASFV strains, whereas O. erraticus and O. verrucosus failed to transmit the Eurasian ASFV strains. However, naïve pigs showed clinical signs of ASF when inoculated with homogenates of crushed O. erraticus and O. verrucosus ticks that fed on viraemic pigs, which proved the infectiousness of ASFV contained in the ticks. These results documented that O. erraticus and O. verrucosus are unlikely to be capable vectors of ASFV strains currently circulating in Eurasia. Additionally, the persistence of infection in soft ticks for several months reaffirms that the infectious status of a given tick species is only part of the data required to assess its vector competence for ASFV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.