The INTERSPEECH 2017 Computational Paralinguistics Challenge addresses three different problems for the first time in research competition under well-defined conditions: In the Addressee sub-challenge, it has to be determined whether speech produced by an adult is directed towards another adult or towards a child; in the Cold sub-challenge, speech under cold has to be told apart from 'healthy' speech; and in the Snoring sub-challenge, four different types of snoring have to be classified. In this paper, we describe these sub-challenges, their conditions, and the baseline feature extraction and classifiers, which include data-learnt feature representations by end-to-end learning with convolutional and recurrent neural networks, and bag-of-audio-words for the first time in the challenge series.
baseline systems on the three proposed tasks: state-of-mind recognition, depression assessment with AI, and cross-cultural affect sensing, respectively.
The INTERSPEECH 2018 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the Atypical Affect Sub-Challenge, four basic emotions annotated in the speech of handicapped subjects have to be classified; in the Self-Assessed Affect Sub-Challenge, valence scores given by the speakers themselves are used for a three-class classification problem; in the Crying Sub-Challenge, three types of infant vocalisations have to be told apart; and in the Heart Beats Sub-Challenge, three different types of heart beats have to be determined. We describe the Sub-Challenges, their conditions, and baseline feature extraction and classifiers, which include data-learnt (supervised) feature representations by end-to-end learning, the 'usual' ComParE and BoAW features, and deep unsupervised representation learning using the AUDEEP toolkit for the first time in the challenge series.
The INTERSPEECH 2020 Computational Paralinguistics Challenge addresses three different problems for the first time in a research competition under well-defined conditions: In the Elderly Emotion Sub-Challenge, arousal and valence in the speech of elderly individuals have to be modelled as a 3-class problem; in the Breathing Sub-Challenge, breathing has to be assessed as a regression problem; and in the Mask Sub-Challenge, speech without and with a surgical mask has to be told apart. We describe the Sub-Challenges, baseline feature extraction, and classifiers based on the 'usual' COMPARE and BoAW features as well as deep unsupervised representation learning using the AUDEEP toolkit, and deep feature extraction from pre-trained CNNs using the DEEP SPECTRUM toolkit; in addition, we partially add deep end-to-end sequential modelling, and, for the first time in the challenge, linguistic analysis.
The INTERSPEECH 2019 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the Styrian Dialects Sub-Challenge, three types of Austrian-German dialects have to be classified; in the Continuous Sleepiness Sub-Challenge, the sleepiness of a speaker has to be assessed as regression problem; in the Baby Sound Sub-Challenge, five types of infant sounds have to be classified; and in the Orca Activity Sub-Challenge, orca sounds have to be detected. We describe the Sub-Challenges and baseline feature extraction and classifiers, which include data-learnt (supervised) feature representations by the 'usual' ComParE and BoAW features, and deep unsupervised representation learning using the AUDEEP toolkit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.