BackgroundIntra-tumor heterogeneity is a potential cause for failure of targeted therapy in gastric cancer, but the extent of heterogeneity of established (HER2) or potential (EGFR, CCND1) target genes and prognostic gene alterations (MYC) had not been systematically studied.MethodsTo study heterogeneity of these genes in a large patient cohort, a heterogeneity tissue microarray was constructed containing 0.6 mm tissue cores from 9 different areas of the primary gastric cancers of 113 patients and matched lymph node metastases from 61 of these patients. Dual color fluorescence in-situ hybridization was performed to assess amplification of HER2, EGFR, CCND1 and MYC using established thresholds (ratio ≥ 2.0). Her2 immunohistochemistry (IHC) was performed in addition.ResultsAmplification was found in 17.4% of 109 interpretable cases for HER2, 6.4% for EGFR, 17.4% for CCND1, and 24.8% for MYC. HER2 amplification was strongly linked to protein overexpression by IHC in a spot-by-spot analysis (p < 0.0001). Intra-tumor heterogeneity was found in the primary tumors of 9 of 19 (47.3%) cancers with HER2, 8 of 17 (47.0%) cancers with CCND1, 5 of 7 (71.4%) cancers with EGFR, and 23 of 27 (85.2%) cancers with MYC amplification. Amplification heterogeneity was particularly frequent in case of low-level amplification (<10 gene copies). While the amplification status was often different between metastases, unequivocal intra-tumor heterogeneity was not found in individual metastases.ConclusionThe data of our study demonstrate that heterogeneity is common for biomarkers in gastric cancer. Given that both TMA tissue cores and clinical tumor biopsies analyze only a small fraction of the tumor bulk, it can be concluded that such heterogeneity may potentially limit treatment decisions based on the analysis of a single clinical cancer biopsy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12876-015-0231-4) contains supplementary material, which is available to authorized users.
Clinical options for systemic therapy of neuroendocrine tumors (NET) are limited. Development of new drugs requires suitable representative and model systems. So far, the unavailability of a human model with a well-differentiated phenotype and typical growth characteristics has impaired preclinical research in NET. Herein, we establish and characterize a lymph node-derived cell line (NT-3) from a male patient with well-differentiated pancreatic NET. Neuroendocrine differentiation and tumor biology was compared with existing NET cell lines BON and QGP-1. growth was assessed in a xenograft mouse model. The neuroendocrine identity of NT-3 was verified by expression of multiple NET-specific markers, which were highly expressed in NT-3 compared with BON and QGP-1. In addition, NT-3 expressed and secreted insulin. Until now, this well-differentiated phenotype is stable since 58 passages. The proliferative labeling index, measured by Ki-67, of 14.6% ± 1.0% in NT-3 is akin to the original tumor (15%-20%), and was lower than in BON (80.6% ± 3.3%) and QGP-1 (82.6% ± 1.0%). NT-3 highly expressed somatostatin receptors (SSTRs: 1, 2, 3, and 5). Upon subcutaneous transplantation of NT-3 cells, recipient mice developed tumors with an efficient tumor take rate (94%) and growth rate (139% ± 13%) by 4 weeks. Importantly, morphology and neuroendocrine marker expression of xenograft tumors resembled the original human tumor. High expression of somatostatin receptors and a well-differentiated phenotype as well as a slow growth rate qualify the new cell line as a relevant model to study neuroendocrine tumor biology and to develop new tumor treatments. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.