In this paper, we report our initial research to obtain hexagonal rod-like elongated silver tungstate (α-Ag(2)WO(4)) microcrystals by different methods [sonochemistry (SC), coprecipitation (CP), and conventional hydrothermal (CH)] and to study their cluster coordination and optical properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier transform infrared (FT-IR), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The shape and average size of these α-Ag(2)WO(4) microcrystals were observed by field-emission scanning electron microscopy (FE-SEM). The optical properties of these microcrystals were investigated by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) measurements. XRD patterns and Rietveld refinement data confirmed that α-Ag(2)WO(4) microcrystals have an orthorhombic structure. FT-IR spectra exhibited four IR-active modes in a range from 250 to 1000 cm(-1). XANES spectra at the W L(3)-edge showed distorted octahedral [WO(6)] clusters in the lattice, while EXAFS analyses confirmed that W atoms are coordinated by six O atoms. FE-SEM images suggest that the α-Ag(2)WO(4) microcrystals grow by aggregation and the Ostwald ripening process. PL properties of α-Ag(2)WO(4) microcrystals decrease with an increase in the optical band-gap values (3.19-3.23 eV). Finally, we observed that large hexagonal rod-like α-Ag(2)WO(4) microcrystals prepared by the SC method exhibited a major PL emission intensity relative to α-Ag(2)WO(4) microcrystals prepared by the CP and CH methods.
In this paper, aggregated CaWO 4 micro-and nanocrystals were synthesized by the co-precipitation method and processed under microwave-assisted hydrothermal/solvothermal conditions (160 C for 30 min). According to the X-ray patterns, all crystals exhibited only the scheelite-type tetragonal structure. The data obtained by the Rietveld refinements revealed that the oxygen atoms occupy different positions in the [WO 4 ] clusters, suggesting the presence of lattice distortions. The crystal shapes as well as its crystallographic orientations were identified by field-emission scanning electron microscopy and high-resolution transmission electron microcopy. Electronic structures of these crystals were evaluated by the first-principles quantum mechanical calculations based on the density functional theory in the B3LYP level. A good correlation was found between the experimental and theoretical Raman and infrared-active modes. A crystal growth mechanism was proposed to explain the morphological evolution. The ultraviolet-visible absorption spectra indicated the existence of intermediary energy levels within the band gap. The highest blue photoluminescence emission, lifetime and quantum yield were observed for the nanocrystals processed in the microwave-assisted solvothermal method.
PbMoO 4 micro-octahedrons were prepared by the coprecipitation method at room temperature without the presence of surfactants and processed in a conventional hydrothermal at different temperatures (from 60 to 120 °C) for 10 min. These micro-octahedrons were structurally characterized by X-ray diffraction (XRD) and micro-Raman (MR) spectroscopy, and its morphology was investigated by field-emission gun scanning electron microscopy (FEG-SEM). The optical properties were analyzed by ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns and MR spectra confirmed that the PbMoO 4 micro-octahedrons are characterized by a scheelite-type tetragonal structure. FEG-SEM micrographs points out that these structures present a polydisperse particle size distribution in consequence of a predominant growth mechanism via aggregation of particles. In addition, it was observed that the hydrothermal conditions favored a spontaneous formation of micro-octahedrons interconnected along a common crystallographic orientation (oriented-attachment), resulting in self-organized structures. An intense blue PL emission at room temperature was observed in these micro-octahedrons when they were excited with a 350 nm wavelength. The origin of the PL emissions as well as its intensity variations are explained by means of a model based on both distorted [MoO 4 ] and [PbO 8 ] clusters into the lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.