Friedreich ataxia (FRDA) is a progressive, inherited, neurodegenerative disease for which there is currently no cure or approved treatment. FRDA is caused by deficits in the production and expression of frataxin, a protein found in the mitochondria that is most likely responsible for regulating iron-sulfur cluster enzymes within the cell. A decrease in frataxin causes dysfunction of adenosine triphosphate synthesis, accumulation of mitochondrial iron, and other events leading to downstream cellular dysfunction. Areas covered: Therapeutic development for FRDA currently focuses on improving mitochondrial function and finding ways to increase frataxin expression. Additionally, the authors will review potential approaches aimed at iron modulation and genetic modulation. Finally, gene therapy is progressing rapidly and is being explored as a treatment for FRDA. Expert commentary: The collection of multiple therapeutic approaches provides many possible ways to treat FRDA. Although the mitochondrial approaches are not thought to be curative, as the primary frataxin deficit will remain, they may still produce improvements in quality of life and slowing of progression. Therapies aimed at frataxin restoration are more likely to truly modify the disease, with gene therapy as the best possibility to alter the course of the disease from both a cardiac and neurological perspective.
Objective In vitro, in vivo, and open‐label studies suggest that interferon gamma (IFN‐γ 1b) may improve clinical features in Friedreich Ataxia through an increase in frataxin levels. The present study evaluates the efficacy and safety of IFN‐γ 1b in the treatment of Friedreich Ataxia through a double‐blind, multicenter, placebo‐controlled trial. Methods Ninety‐two subjects with FRDA between 10 and 25 years of age were enrolled. Subjects received either IFN‐γ 1b or placebo for 6 months. The primary outcome measure was the modified Friedreich Ataxia Rating Scale (mFARS). Results No difference was noted between the groups after 6 months of treatment in the mFARS or secondary outcome measures. No change was noted in buccal cell or whole blood frataxin levels. However, during an open‐label extension period, subjects had a more stable course than expected based on natural history data. Conclusions This study provides no direct evidence for a beneficial effect of IFN‐γ1b in FRDA. The modest stabilization compared to natural history data leaves open the possibility that longer studies may demonstrate benefit.
Background Friedreich’s ataxia is an inherited, progressive, neurodegenerative disease that typically begins in childhood. Disease severity is commonly assessed with rating scales, such as the modified Friedreich’s Ataxia Rating Scale, which are usually administered in the clinic by a neurology specialist. Objective This study evaluated the utility of home‐based, self‐administered digital endpoints in children with Friedreich’s ataxia and unaffected controls and their relationship to standard clinical rating scales. Methods In a cross‐sectional study with 25 participants (13 with Friedreich’s ataxia and 12 unaffected controls, aged 6–15 years), home‐based digital endpoints that reflect activities of daily living were recorded over 1 week. Domains analyzed were hand motor function with a digitized drawing, automated analysis of speech with a recorded oral diadochokinesis test, and gait and balance with wearable sensors. Results Hand‐drawing and speech tests were easy to conduct and generated high‐quality data. The sensor‐based gait and balance tests suffered from technical limitations in this study setup. Several parameters discriminated between groups or correlated strongly with modified Friedreich’s Ataxia Rating Scale total score and activities of daily living total score in the Friedreich’s ataxia group. Hand‐drawing parameters also strongly correlated with standard 9‐hole peg test scores. Interpretation Deploying digital endpoints in home settings is feasible in this population, results in meaningful and robust data collection, and may allow for frequent sampling over longer periods of time to track disease progression. Care must be taken when training participants, and investigators should consider the complexity of the tasks and equipment used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.