Abiotic stresses have a detrimental impact on plant growth and productivity and are a major threat to sustainable crop production in rapidly changing environments. Proline, an important amino acid, plays an important role in maintaining the metabolism and growth of plants under abiotic stress conditions. Many insights indicate a positive relationship between proline accumulation and tolerance of plants to various abiotic stresses. Because of its metal chelator properties, it acts as a molecular chaperone, an antioxidative defence molecule that scavenges reactive oxygen species (ROS), as well as having signalling behaviour to activate specific gene functions that are crucial for plant recovery from stresses. It also acts as an osmoprotectant, a potential source to acquire nitrogen as well as carbon, and plays a significant role in the flowering and development of plants. Overproduction of proline in plant cells contributes to maintaining cellular homeostasis, water uptake, osmotic adjustment and redox balance to restore the cell structures and mitigate oxidative damage. Many reports reveal that transgenic plants, particularly those overexpressing genes tailored for proline accumulation, exhibit better adaptation to abiotic stresses. Therefore, this review aims to provide a comprehensive update on proline biosynthesis and accumulation in plants and its putative regulatory roles in mediating plant defence against abiotic stresses. Additionally, the current and future directions in research concerning manipulation of proline to induce gene functions that appear promising in genetics and genomics approaches to improve plant adaptive responses under changing climate conditions are also highlighted.
The chitosan (CHT) biopolymer is a de-acetylated chitin derivative that exists in the outer shell of shrimp, shellfish, lobster or crabs, as well as fungal cell walls. Because of its biodegradability, environmental non-toxicity, and biocompatibility, it is an ideal resource for sustainable agriculture. The CHT emerged as a promising agent used as a plant growth promoter and also as an antimicrobial agent. It induces plant growth by influencing plant physiological processes like nutrient uptake, cell division, cell elongation, enzymatic activation and synthesis of protein that can eventually lead to increased yield. It also acts as a catalyst to inhibit the growth of plant pathogens, and alter plant defense responses by triggering multiple useful metabolic pathways. This review emphasizes the role and mechanisms of CHT as a plant growth promoter and disease suppressor, and its future implications in agriculture.
Wheat blast, caused by the Magnaporthe oryzae Triticum (MoT) lineage (synonym Pyricularia oryzae Triticum lineage), is a destructive disease in South America and Bangladesh. It is primarily a disease of wheat head, which can cause yield loss up to 100% under favorable disease conditions. The head infection results in complete or partial bleaching of the spike above the point of infection with either no grain or shriveled grain with low test weight. Due to low fungicide efficacy against the disease and lack of availability of resistant varieties, an integrated management program should be adopted to control this serious wheat disease. First of all, a convenient and specific diagnostic tool is needed for evaluating seed health and early detection in wheat field to initiate timely mitigation measures and thereby decreasing pathogen initial inoculum and dispersal. Second, we should have a better understanding of the epidemiology of the disease and develop a real-time disease monitoring and surveillance system to alert growers to apply management practices at an optimum time. Third, we need a better understanding of the infection biology of the fungus and its interaction with wheat plants at the tissue and molecular levels helpful for improving disease management. Fourth, breeding for resistance to wheat blast can be accelerated by using resistance genes such as 2NS translocation, Rmg8 and RmgGR119 or advanced genomic technology such as CRISPR-Cas. Fifth, integration of alternative disease management practices, such as biological control using antagonistic microorganisms or derivatives thereof to achieve sustainable approach for the management of wheat blast. Finally, a globally concerted effort is needed using open science and open data sharing approaches to prevent this seed-and airborne plant disease's widespread devastation of wheat crop. This comprehensive review updates our knowledge on wheat blast disease and discusses the approaches for its sustainable management for ensuring food and nutritional security of the ever-increasing global population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.