ObjectiveThe aim of this study was to examine the relative contributions of body mass index (BMI) and pubertal measures for risk and age of onset of pediatric MS.MethodsCase–control study of 254 (63% female) MS cases (onset<18 years of age) and 420 (49% female) controls conducted at 14 U.S. Pediatric MS Centers. Sex‐ and age‐stratified BMI percentiles were calculated using CDC growth charts from height and weight measured at enrollment for controls, and within 1 year of onset for MS cases. Sex‐stratified associations between MS risk and age at symptom onset with both BMI and pubertal factors were estimated controlling for race and ethnicity.ResultsOnly 11% of girls and 15% of boys were prepubertal (Tanner stage I) at MS onset. 80% of girls had onset of MS after menarche. BMI percentiles were higher in MS cases versus controls (girls: P < 0.001; boys: P = 0.018). BMI was associated with odds of MS in multivariate models in postpubertal girls (OR = 1.60, 95% confidence interval [CI]: 1.12, 2.27, P = 0.009) and boys (OR = 1.43, 95% CI: 1.08, 1.88, P = 0.011). In girls with MS onset after menarche, higher BMI was associated with younger age at first symptoms (P = 0.031). Younger menarche was associated with stronger effects of BMI through mediation and interaction analysis. In pubertal/postpubertal boys, 89% of whom were obese/overweight, earlier sexual maturity was associated with earlier onset of MS (P < 0.001).InterpretationHigher BMI in early adolescence is a risk factor for MS in girls and boys. Earlier age at sexual maturity contributes to earlier age at MS onset, particularly in association with obesity.
Background
High salt intake may be associated with pro-inflammatory changes in the immune response, and increased clinical and MRI activity in adults with relapsing-remitting multiple sclerosis.
Objective
We sought to determine if dietary salt intake is associated with pediatric-onset MS risk in a multicenter, case-control study.
Methods
Pediatric-onset CIS/MS cases within four years of onset and controls less than 22 years old recruited from 14 pediatric-MS centers were studied. Dietary sodium intake was assessed using the validated Block Kids Food Screener (NutritionQuest). Sodium intake, excess sodium, and sodium terciles were compared between cases and controls. Logistic regression models were adjusted for age, gender, ethnicity, body mass index, and socioeconomic status.
Results
Among 170 cases (mean age=15.2±3.5) and 331 controls (mean age=14.0±3.7), no significant difference in unadjusted mean sodium intake was found between cases (2044 mg/d) and controls (2030 mg/d, p=0.99). The proportion of subjects consuming excess sodium, based on the adequate intake for age and gender, was similar between cases and controls (65% versus 69%, p=0.34). There were no increased odds of higher sodium intake among cases as compared to controls (for each 100 mg/d increase in sodium, OR=1.00, 95% CI 0.98, 1.02; p=0.93, for excess sodium intake, OR=1.05, 95% CI 0.67, 1.64; p=0.84).
Conclusions
Our results show no strong association between dietary salt intake and pediatric-onset MS risk, suggesting that salt intake may not play a prominent role in susceptibility to MS in children.
Pediatric and adult MS share many genetic variants suggesting similar biological processes are present. MHC variants beyond HLA-DRB1*15:01 and HLA-A*02 are also associated with POMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.