This study determined effects of dietary supplementation with L-arginine (Arg) or N-carbamylglutamate (NCG) on intestinal health and growth in early-weaned pigs. Eighty-four Landrace x Yorkshire pigs (average body weight of 5.56+/-0.07 kg; weaned at 21 days of age) were fed for 7 days one of the three isonitrogenous diets: (1) a corn- and soybean meal-based diet (CSM), (2) CSM+0.08% NCG (0.08%), and (3) CSM+0.6% Arg. There were four pens of pigs per diet (7 pigs/pen). At the end of a 7-day feeding period, six piglets were randomly selected from each treatment for tissue collections. Compared with the control group, Arg or NCG supplementation increased (P<0.05): (1) Arg concentrations in plasma, (2) small-intestinal growth, (3) villus height in duodenum, jejunum and ileum, (4) crypt depth in jejunum and ileum, (5) goblet cell counts in intestinal mucosae, and (6) whole-body weight gain in pigs. Real-time polymerase chain reaction and western blotting analyses revealed that both mRNA and protein levels for heat shock protein-70 (HSP70) were higher (P<0.05) in the intestinal mucosae of Arg- or NCG-supplemented pigs than in the control group. Furthermore, the incidence of diarrhea in the NCG group was 18% lower (P<0.01) than that in the control group. Collectively, these results indicate that dietary supplementation with 0.6% Arg or 0.08% NCG enhances intestinal HSP70 gene expression, intestinal growth and integrity, and the availability of dietary nutrients for whole-body weight gain in postweaning pigs fed a CSM-based diet. Thus, Arg or NCG is a functional ingredient in the weaning diet to improve nutrition, health, and growth performance of these neonates.
Revealing the expression patterns of fatty acid and amino acid transporters as affected by dietary n-6:n-3 PUFA ratio would be useful for further clarifying the importance of the balance between n-6 and n-3 PUFA. A total of ninety-six finishing pigs were fed one of four diets with the ratio of 1:1, 2·5:1, 5:1 and 10:1. Pigs fed the dietary n-6:n-3 PUFA ratio of 5:1 had the highest (P,0·05) daily weight gain, and those fed the dietary n-6:n-3 PUFA ratio of 1:1 had the largest loin muscle area (P,0·01). The concentration of n-3 PUFA was raised as the ratio declined (P,0·05) in the longissimus dorsi and subcutaneous adipose tissue. The contents of tryptophan, tasty amino acids and branchedchain amino acids in the longissimus dorsi were enhanced in pigs fed the dietary n-6:n-3 PUFA ratios of 1:1-5:1. The mRNA expression level of the fatty acid transporter fatty acid transport protein-1 (FATP-1) was declined (P,0·05) in the longissimus dorsi of pigs fed the dietary n-6:n-3 PUFA ratios of 1:1-5:1, and increased (P, 0·05) in the subcutaneous adipose tissue of pigs fed the dietary n-6:n-3 PUFA ratios of 5:1 and 10:1. The expression profile of FATP-4 was similar to those of FATP-1 in the adipose tissue. The mRNA expression level of the amino acid transceptors LAT1 and SNAT2 was up-regulated (P,0·05) in the longissimus dorsi of pigs fed the dietary n-6:n-3 PUFA ratios of 1:1 and 2·5:1. In conclusion, maintaining the dietary n-6:n-3 PUFA ratios of 1:1-5:1 would facilitate the absorption and utilisation of fatty acids and free amino acids, and result in improved muscle and adipose composition.
Lactoferrin has antimicrobial activity associated with peptide fragments lactoferricin (LFC) and lactoferrampin (LFA) released on digestion. These two fragments have been expressed in Photorhabdus luminescens as a fusion peptide linked to protein cipB. The construct cipB -LFC -LFA was tested as an alternative to antimicrobial growth promoters in pig production. Sixty piglets with an average live body weight of 5·42 (SEM 0·59) kg were challenged with enterotoxigenic Escherichia coli and randomly assigned to four treatment groups fed a maize -soyabean meal diet containing either no addition (C), cipB at 100 mg/kg (C þ B), cipB -LFC -LFA at 100 mg/kg (C þ L) or colistin sulfate at 100 mg/kg (C þ CS) for 3 weeks. Compared with C, dietary supplementation with C þ L for 3 weeks increased daily weight gain by 21 %, increased recovery from diarrhoea, enhanced serum glutathione peroxidase (GPx), peroxidase (POD) and total antioxidant content (T-AOC), liver GPx, POD, superoxide dismutase and T-AOC, Fe, total Fe-binding capacity, IgA, IgG and IgM levels (P,0·05), decreased the concentration of E. coli in the ileum, caecum and colon (P, 0·05), increased the concentration of lactobacilli and bifidobacteria in the ileum, caecum and colon (P,0·05), and promoted development of the villus -crypt architecture of the small intestine. Growth performance was similar between C þ L-and C þ CS-supplemented pigs. The present results indicate that LFC -LFA is an effective alternative to the feed antibiotic CS for enhancing growth performance in piglets weaned at age 21 d.
The gut harbours diverse and complex microbiota, which influence body health including nutrient metabolism, immune development, and protection from pathogens. Pregnancy is associated with immune and metabolic changes that might be related to microbiota compositional dynamics. We therefore investigated the colonic luminal bacteria community in Huanjiang mini-pigs fed diets with different nutrient levels from the first to third trimester of pregnancy. The concentrations of intestinal metabolites including short-chain fat acids, NH3-N, indole, skatole, and bioamines were also determined. We found that the colonic bacteria species richness estimators (Chao1 and ACE) decreased with increased gestational age. The dominant phyla identified were Firmicutes and Bacteroidetes; the dominant genera were Lactobacillus, Treponema, Ruminococcus, Clostridium, and Prevotella. In addition, microbiota displayed spatial and temporal heterogeneity in composition, diversity, and species abundance in different colonic segments from the first to third trimester of pregnancy. Furthermore, the bacterial metabolites also changed according to the diet used and the pregnancy stage. These findings suggest that colonic bacteria richness decreased as gestational age increased, and that the higher nutrient level diet increased the production of metabolites related to nitrogen metabolism. However, although the higher nutrient diet was associated with pregnancy syndrome, causal links remain to be determined.
Placental vascular formation and blood flow are crucial for fetal survival, growth and development, and arginine regulates vascular development and function. This study determined the effects of dietary arginine or N-carbamylglutamate (NCG) supplementation during late gestation of sows on the microRNAs, vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) expression in umbilical vein. Twenty-seven landrace × large white sows at day (d) 90 of gestation were assigned randomly to three groups and fed the following diets: a control diet and the control diet supplemented with 1.0% l-arginine or 0.10% NCG. Umbilical vein of fetuses with body weight around 2.0 kg (oversized), 1.5 kg (normal) and 0.6 kg (intrauterine growth restriction, IUGR) were obtained immediately after farrowing for miR-15b, miR-16, miR-221, miR-222, VEGFA and eNOS real-time PCR analysis. Compared with the control diets, dietary Arg or NCG supplementation enhanced the reproductive performance of sows, significantly increased (P < 0.05) plasma arginine and decreased plasma VEGF and eNOS (P < 0.05). The miR-15b expression in the umbilical vein was higher (P < 0.05) in the NCG-supplemented group than in the control group. There was a trend in that the miR-222 expression in the umbilical vein of the oversized fetuses was higher (0.05 < P < 0.1) than in the normal and IUGR fetuses. The expression of eNOS in both Arg-supplemented and NCG-supplemented group were lower (P < 0.05) than in the control group. The expression of VEGFA was higher (P < 0.05) in the NCG-supplemented group than in the Arg-supplemented and the control group. Meanwhile, the expression of VEGFA of the oversized fetuses was higher (P < 0.05) than the normal and IUGR fetuses. In conclusion, this study demonstrated that dietary Arg or NCG supplementation may affect microRNAs (miR-15b, miR-222) targeting VEGFA and eNOS gene expressions in umbilical vein, so as to regulate the function and volume of the umbilical vein, provide more nutrients and oxygen from the maternal to the fetus tissue for fetal development and survival, and enhance the reproductive performance of sows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.