Recurrent de novo (DN) and likely gene-disruptive (LGD) mutations contribute significantly to autism spectrum disorders (ASDs) but have been primarily investigated in European cohorts. Here, we sequence 189 risk genes in 1,543 Chinese ASD probands (1,045 from trios). We report an 11-fold increase in the odds of DN LGD mutations compared with expectation under an exome-wide neutral model of mutation. In aggregate, ∼4% of ASD patients carry a DN mutation in one of just 29 autism risk genes. The most prevalent gene for recurrent DN mutations is SCN2A (1.1% of patients) followed by CHD8, DSCAM, MECP2, POGZ, WDFY3 and ASH1L. We identify novel DN LGD recurrences (GIGYF2, MYT1L, CUL3, DOCK8 and ZNF292) and DN mutations in previous ASD candidates (ARHGAP32, NCOR1, PHIP, STXBP1, CDKL5 and SHANK1). Phenotypic follow-up confirms potential subtypes and highlights how large global cohorts might be leveraged to prove the pathogenic significance of individually rare mutations.
Antibody therapy is coming of age, with 15 monoclonal antibodies approved for therapeutic use in the United States and many others currently undergoing clinical trials (1). The advent of antibody engineering over the past two decades has contributed to the recent clinical success of therapeutic antibodies. The development of chimeric (2) and humanized (3) antibodies not only reduced the potent immunogenicity of rodent antibodies in humans but also improved the serum halflives and efficacy of such therapeutics compared with rodent antibodies. Phage display (4) and other display technologies have led to the ability to increase the affinity of antibodies for their target antigens. More recently, antibody engineering has been used to modify the effector functions of antibodies by altering their binding to C1q (5) and various Fc␥ receptors (6).The neonatal Fc receptor (FcRn) 1 is a heterodimer that comprises a transmembrane ␣ chain with structural homology to the extracellular domains of the ␣ chain of major histocompatibility complex class I molecules, and a soluble light chain consisting of 2-microglubulin (2m) (7). FcRn mediates both transcytosis of maternal IgG to the fetus or neonate and IgG homeostasis in adults (8). Evidence for the latter role initially came from studies indicating an unusually short serum halflife for IgG antibodies in 2m-deficient mice (9 -11). This observation led to the generation of mutant mouse hinge-Fc fragments with enhanced binding to FcRn and increased serum persistence in mice (12). Recently, several studies have identified human IgG 1 mutants with enhanced FcRn binding (6, 13), although no improvement in the serum half-lives of these mutants was observed in mice (13) or reported in primates.The binding of IgG to FcRn is sharply pH-dependent; IgG binds to FcRn under mildly acidic conditions and is released under slightly basic conditions (14). It has been hypothesized that pinocytosed IgG antibodies are captured by FcRn in acidified endosomes, rescued from degradation in lysosomes, recycled back to the cell surface, and returned to the circulation (8). Mutagenesis studies have identified both the mouse (15, 16) and human (17) Fc residues believed to be important in mediating pH-dependent binding. The results of the mutagenesis studies are consistent with the interpretation of a crystallographic study of the Fc⅐FcRn interaction (18). In the current study, molecular modeling was used to identify residues in the human IgG Fc near the FcRn binding site that, when mutated, might alter binding to FcRn without affecting the pH dependence of this interaction. Following exhaustive mutagenesis at these positions, several IgG 2 mutants were identified with improved binding to FcRn at pH 6.0 that retained the property of pH-dependent release. A pharmacokinetics study in rhesus monkeys showed that two mutant IgG 2 antibodies with increased FcRn binding affinity had considerably longer serum half-lives than the wild-type antibody. EXPERIMENTAL PROCEDURESMolecular Modeling-Molecular models o...
The serum half-life of IgG Abs is regulated by the neonatal Fc receptor (FcRn). By binding to FcRn in endosomes, IgG Abs are salvaged from lysosomal degradation and recycled to the circulation. Several studies have demonstrated a correlation between the binding affinity of IgG Abs to FcRn and their serum half-lives in mice, including engineered Ab fragments with longer serum half-lives. Our recent study extended this correlation to human IgG2 Ab variants in primates. In the current study, several human IgG1 mutants with increased binding affinity to human FcRn at pH 6.0 were generated that retained pH-dependent release. A pharmacokinetics study in rhesus monkeys of one of the IgG1 variants indicated that its serum half-life was ∼2.5-fold longer than the wild-type Ab. Ag binding was unaffected by the Fc mutations, while several effector functions appeared to be minimally altered. These properties suggest that engineered Abs with longer serum half-lives may prove to be effective therapeutics in humans.
The analysis provided insights into the conditions under which either fixed or body weight-based dosing would be superior in reducing pharmacokinetic variability and exposure differences between light and heavy subjects across the population. The pharmacokinetic variability introduced by either dosing regimen is moderate relative to the variability generally observed in pharmacodynamics, efficacy and safety. Therefore, mAb dosing can be flexible. Given many practical advantages, fixed dosing is recommended to be the first option in first-in-human studies with mAbs. The dosing strategy in later stages of clinical development could then be determined based on combined knowledge of the body weight effect on pharmacokinetics, safety and efficacy from the early clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.