OBJECTIVE-Mammalian target of rapamycin (mTOR) and its downstream target S6 kinase 1 (S6K1) mediate nutrient-induced insulin resistance by downregulating insulin receptor substrate proteins with subsequent reduced Akt phosphorylation. Therefore, mTOR/S6K1 inhibition could become a therapeutic strategy in insulin-resistant states, including type 2 diabetes. We tested this hypothesis in the Psammomys obesus (P. obesus) model of nutrition-dependent type 2 diabetes, using the mTOR inhibitor rapamycin.RESEARCH DESIGN AND METHODS-Normoglycemic and diabetic P. obesus were treated with 0.2 mg ⅐ kg Ϫ1 ⅐ day Ϫ1 i.p. rapamycin or vehicle, and the effects on insulin signaling in muscle, liver and islets, and on different metabolic parameters were analyzed.RESULTS-Unexpectedly, rapamycin worsened hyperglycemia in diabetic P. obesus without affecting glycemia in normoglycemic controls. There was a 10-fold increase of serum insulin in diabetic P. obesus compared with controls; rapamycin completely abolished this increase. This was accompanied by weight loss and a robust increase of serum lipids and ketone bodies. Rapamycin decreased muscle insulin sensitivity paralleled by increased glycogen synthase kinase 3 activity. In diabetic animals, rapamycin reduced -cell mass by 50% through increased apoptosis. Rapamycin increased the stress-responsive c-Jun NH 2 -terminal kinase pathway in muscle and islets, which could account for its effect on insulin resistance and -cell apoptosis. Moreover, glucose-stimulated insulin secretion and biosynthesis were impaired in islets treated with rapamycin.CONCLUSIONS-Rapamycin induces fulminant diabetes by increasing insulin resistance and reducing -cell function and mass. These findings emphasize the essential role of mTOR/S6K1 in orchestrating -cell adaptation to hyperglycemia in type 2 diabetes. It is likely that treatments based on mTOR inhibition will cause exacerbation of diabetes. Diabetes 57:945-957, 2008
OBJECTIVE-Insulin secretion involves complex events in which the mitochondria play a pivotal role in the generation of signals that couple glucose detection to insulin secretion. Studies on the mitochondrial generation of reactive oxygen species (ROS) generally focus on chronic nutrient exposure. Here, we investigate whether transient mitochondrial ROS production linked to glucose-induced increased respiration might act as a signal for monitoring insulin secretion.RESEARCH DESIGN AND METHODS-ROS production in response to glucose was investigated in freshly isolated rat islets. ROS effects were studied using a pharmacological approach and calcium imaging.RESULTS-Transient glucose increase from 5.5 to 16.7 mmol/l stimulated ROS generation, which was reversed by antioxidants. Insulin secretion was dose dependently blunted by antioxidants and highly correlated with ROS levels. The incapacity of -cells to secrete insulin in response to glucose with antioxidants was associated with a decrease in ROS production and in contrast to the maintenance of high levels of ATP and NADH. Then, we investigated the mitochondrial origin of ROS (mROS) as the triggering signal. Insulin release was mimicked by the mitochondrial-complex blockers, antimycin and rotenone, that generate mROS. The adding of antioxidants to mitochondrial blockers or to glucose was used to lower mROS reversed insulin secretion. Finally, calcium imaging on perifused islets using glucose stimulation or mitochondrial blockers revealed that calcium mobilization was completely reversed using the antioxidant trolox and that it was of extracellular origin. No toxic effects were present using these pharmacological approaches. CONCLUSIONS-Altogether, these complementary results demonstrate that mROS production is a necessary stimulus for glucose-induced insulin secretion. Diabetes 58:673-681, 2009 E lucidating the mechanisms by which pancreatic -cells couple glucose sensing to insulin secretion, a vital process in energy homeostasis, is of prime importance. Although ATP production is considered the main mitochondrial signal, detailed studies show that insulin secretion cannot be restricted to ATP synthesis, and numerous experimental clues show that additional mitochondrial factors involved in glucose-secretion coupling are necessary, although not yet identified (1).Transient increases in glucose metabolism generate NADH and FADH 2 , leading rapidly to increased superoxide anion (O 2 ⅐ ) production; obligatorily associated with the respiratory chain function, superoxide anion will be converted into H 2 O 2 (2). This production of mitochondrial reactive oxygen species (mROS)-transient because H 2 O 2 -inactivating enzymes rapidly quench it before a damage to the physiological conditions of the cell occurs-is now recognized as an intracellular messenger (3,4). These features make mROS a good candidate for rapidly regulating pathways that depend directly on metabolic fluxes. Based on such a view, we recently demonstrated that mROS production is required for hypothalamic...
Inhibition of dipeptidyl peptidase-4 (DPP-4) activity improves glucose homeostasis through a mode of action related to the stabilization of the active forms of DPP-4-sensitive hormones such as the incretins that enhance glucose-induced insulin secretion. However, the DPP-4 enzyme is highly expressed on the surface of intestinal epithelial cells; hence, the role of intestinal vs. systemic DPP-4 remains unclear. To analyze mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice, we administered low oral doses of the DPP-4 inhibitor sitagliptin that selectively reduced DPP-4 activity in the intestine. Glp1r(-/-) and Gipr(-/-) mice were studied and glucagon-like peptide (GLP)-1 receptor (GLP-1R) signaling was blocked by an i.v. infusion of the corresponding receptor antagonist exendin (9-39). The role of the dipeptides His-Ala and Tyr-Ala as DPP-4-generated GLP-1 and glucose-dependent insulinotropic peptide (GIP) degradation products was studied in vivo and in vitro on isolated islets. We demonstrate that very low doses of oral sitagliptin improve glucose tolerance and plasma insulin levels with selective reduction of intestinal but not systemic DPP-4 activity. The glucoregulatory action of sitagliptin was associated with increased vagus nerve activity and was diminished in wild-type mice treated with the GLP-1R antagonist exendin (9-39) and in Glp1r(-/-) and Gipr(-/-) mice. Furthermore, the dipeptides liberated from GLP-1 (His-Ala) and GIP (Tyr-Ala) deteriorated glucose tolerance, reduced insulin, and increased portal glucagon levels. The predominant mechanism through which DPP-4 inhibitors regulate glycemia involves local inhibition of intestinal DPP-4 activity, activation of incretin receptors, reduced liberation of bioactive dipeptides, and activation of the gut-to-pancreas neural axis.
Inflammation is characterized by the recruitment of leukocytes from the bloodstream. The rapid arrival of neutrophils is followed by a wave of inflammatory lymphocyte antigen 6 complex (Ly6C)-positive monocytes. In contrast Ly6C low monocytes survey the endothelium in the steady state, but their role in inflammation is still unclear. Here, using confocal intravital microscopy, we show that upon Toll-like receptor 7/8 (TLR7/8)-mediated inflammation of mesenteric veins, platelet activation drives the rapid mobilization of Ly6C low monocytes to the luminal side of the endothelium. After repeatedly interacting with platelets, Ly6C low monocytes commit to a meticulous patrolling of the endothelial wall and orchestrate the subsequent arrival and extravasation of neutrophils through the production of proinflammatory cytokines and chemokines. At a molecular level, we show that cysteine-rich protein 61 (CYR61)/CYR61 connective tissue growth factor nephroblastoma overexpressed 1 (CCN1) protein is released by activated platelets and enables the recruitment of Ly6C low monocytes upon vascular inflammation. In addition endothelium-bound CCN1 sustains the adequate patrolling of Ly6C low monocytes both in the steady state and under inflammatory conditions. Blocking CCN1 or platelets with specific antibodies impaired the early arrival of Ly6C low monocytes and abolished the recruitment of neutrophils. These results refine the leukocyte recruitment cascade model by introducing endothelium-bound CCN1 as an inflammation mediator and by demonstrating a role for platelets and patrolling Ly6C low monocytes in acute vascular inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.