Aims:To investigate the association between tumour characteristics and HER-2/neu by immunohistochemistry in primary operable breast cancer.Methods:The association between HER-2/neu and other clinicopathological factors was evaluated in 1362 consecutive patients with primary breast cancer treated between 2000 and July 2003 in one centre. Microscopic tumour size, tumour grade, lymph node status, patient’s age, oestrogen receptor (ER), progesterone receptor (PR), and joint ER/PR status were evaluated, using the χ2test for univariate analysis and logistic regression for multivariate analysis. The hormone receptors and HER-2/neu were studied immunohistochemically. Using the HER-2/neu DAKO scoring system, scores of 0, 1+, or 2+ were defined as negative and 3+ as positive. Data for DAKO scores 2+/3+ versus 0/1+ are also presented.Results:Hormone receptor negative breast cancers were more often HER-2/neu positive than hormone receptor positive cancers, both for ER (28.7%v6.8%) and PR (19.9%v5.9%). In multivariate analysis, both ER, PR, and tumour grade were independently associated with HER-2/neu. In ER+tumours, HER-2/neu overexpression was significantly lower in PR+than in PR−cases (11.5%v5.4%). HER-2/neu overexpression (2.7%) was lowest in the large subgroup of ER+PR+tumours with low tumour grade (grade 1–2), comprising 46.1% of all patients.Conclusions:ER, PR, and tumour grade are independent predictors for HER-2/neu overexpression in women with primary operable breast cancer. ER and PR are negatively associated with HER-2/neu, whereas tumour grade is positively associated with HER-2/neu. In women with ER+tumours, PR status also affects the likelihood of HER-2/neu expression.
Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype. To identify novel loci, we performed a genome-wide association study (GWAS) including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status and tumor grade. We identified 32 novel susceptibility loci (P<5.0x10 -8 ), 15 of which showed evidence for associations with at least one tumor feature (false discovery rate <0.05). Five loci showed associations (P<0.05) in opposite directions between luminal-and non-luminal subtypes. In-silico analyses showed these five loci contained cell-specific enhancers that differed between normal luminal and basal mammary cells. The genetic correlations between five intrinsic-like subtypes ranged from 0.35 to 0.80. The proportion of genome-wide chip heritability explained by all known susceptibility loci was 37.6% for triple-negative and 54.2% for luminal A-like disease. These findings provide an improved understanding of genetic predisposition to breast cancer subtypes and will inform the development of subtype-specific polygenic risk scores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.