Numerous new disease-gene associations have been identified by whole-exome sequencing studies in the last few years. However, many cases remain unsolved due to the sheer number of candidate variants remaining after common filtering strategies such as removing low quality and common variants and those deemed unlikely to be pathogenic. The observation that each of our genomes contains about 100 genuine loss-of-function variants makes identification of the causative mutation problematic when using these strategies alone. We propose using the wealth of genotype to phenotype data that already exists from model organism studies to assess the potential impact of these exome variants. Here, we introduce PHenotypic Interpretation of Variants in Exomes (PHIVE), an algorithm that integrates the calculation of phenotype similarity between human diseases and genetically modified mouse models with evaluation of the variants according to allele frequency, pathogenicity, and mode of inheritance approaches in our Exomiser tool. Large-scale validation of PHIVE analysis using 100,000 exomes containing known mutations demonstrated a substantial improvement (up to 54.1-fold) over purely variant-based (frequency and pathogenicity) methods with the correct gene recalled as the top hit in up to 83% of samples, corresponding to an area under the ROC curve of >95%. We conclude that incorporation of phenotype data can play a vital role in translational bioinformatics and propose that exome sequencing projects should systematically capture clinical phenotypes to take advantage of the strategy presented here.
Exomiser is an application that prioritizes genes and variants in next-generation sequencing (NGS) projects for novel disease-gene discovery or differential diagnostics of Mendelian disease. Exomiser comprises a suite of algorithms for prioritizing exome sequences using random-walk analysis of protein interaction networks, clinical relevance and cross-species phenotype comparisons, as well as a wide range of other computational filters for variant frequency, predicted pathogenicity and pedigree analysis. In this protocol, we provide a detailed explanation of how to install Exomiser and use it to prioritize exome sequences in a number of scenarios. Exomiser requires ~3 GB of RAM and roughly 15–90 s of computing time on a standard desktop computer to analyze a variant call format (VCF) file. Exomiser is freely available for academic use from http://www.sanger.ac.uk/science/tools/exomiser.
Background The UK 100,000 Genomes Project is in the process of investigating the role of genome sequencing of patients with undiagnosed rare disease following usual care, and the alignment of research with healthcare implementation in the UK’s national health service. (Other parts of this Project focus on patients with cancer and infection.) Methods We enrolled participants, collected clinical features with human phenotype ontology terms, undertook genome sequencing and applied automated variant prioritization based on virtual gene panels (PanelApp) and phenotypes (Exomiser), alongside identification of novel pathogenic variants through research analysis. We report results on a pilot study of 4660 participants from 2183 families with 161 disorders covering a broad spectrum of rare disease. Results Diagnostic yields varied by family structure and were highest in trios and larger pedigrees. Likely monogenic disorders had much higher diagnostic yields (35%) with intellectual disability, hearing and vision disorders, achieving yields between 40 and 55%. Those with more complex etiologies had an overall 25% yield. Combining research and automated approaches was critical to 14% of diagnoses in which we found etiologic non-coding, structural and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohort-wide burden testing across 57,000 genomes enabled discovery of 3 new disease genes and 19 novel associations. Of the genetic diagnoses that we made, 24% had immediate ramifications for the clinical decision-making for the patient or their relatives. Conclusion Our pilot study of genome sequencing in a national health care system demonstrates diagnostic uplift across a range of rare diseases. (Funded by National Institute for Health Research and others)
Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore integrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic workflow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)] to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that evaluated and ranked variants based on pathogenicity and semantic similarity of patients’ phenotype described by Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differential diagnostics in medical genetics.
for the National COVID Cohort Collaborative (N3C) Consortium IMPORTANCE Persons with immune dysfunction have a higher risk for severe COVID-19 outcomes. However, these patients were largely excluded from SARS-CoV-2 vaccine clinical trials, creating a large evidence gap.OBJECTIVE To identify the incidence rate and incidence rate ratio (IRR) for COVID-19 breakthrough infection after SARS-CoV-2 vaccination among persons with or without immune dysfunction. DESIGN, SETTING, AND PARTICIPANTSThis retrospective cohort study analyzed data from the National COVID Cohort Collaborative (N3C), a partnership that developed a secure, centralized electronic medical record-based repository of COVID-19 clinical data from academic medical centers across the US. Persons who received at least 1 dose of a SARS-CoV-2 vaccine between December 10, 2020, and September 16, 2021, were included in the sample.MAIN OUTCOMES AND MEASURES Vaccination, COVID-19 diagnosis, immune dysfunction diagnoses (ie, HIV infection, multiple sclerosis, rheumatoid arthritis, solid organ transplant, and bone marrow transplantation), other comorbid conditions, and demographic data were accessed through the N3C Data Enclave. Breakthrough infection was defined as a COVID-19 infection that was contracted on or after the 14th day of vaccination, and the risk after full or partial vaccination was assessed for patients with or without immune dysfunction using Poisson regression with robust SEs. Poisson regression models were controlled for a study period (before or after [pre-or post-Delta variant] June 20, 2021), full vaccination status, COVID-19 infection before vaccination, demographic characteristics, geographic location, and comorbidity burden.RESULTS A total of 664 722 patients in the N3C sample were included. These patients had a median (IQR) age of 51 (34-66) years and were predominantly women (n = 378 307 [56.9%]). Overall, the incidence rate for COVID-19 breakthrough infection was 5.0 per 1000 person-months among fully vaccinated persons but was higher after the Delta variant became the dominant SARS-CoV-2 strain (incidence rate before vs after June 20, 2021, 2.2 [95% CI, 2.2-2.2] vs 7.3 [95% CI,] per 1000 person-months). Compared with partial vaccination, full vaccination was associated with a 28% reduced risk for breakthrough infection (adjusted IRR [AIRR], 0.72; 95% CI, 0.68-0.76). People with a breakthrough infection after full vaccination were more likely to be older and women. People with HIV infection (AIRR, 1.33; 95% CI, 1.18-1.49), rheumatoid arthritis (AIRR, 1.20; 95% CI, 1.09-1.32), and solid organ transplant (AIRR, 2.16; 95% CI, 1.96-2.38) had a higher rate of breakthrough infection.CONCLUSIONS AND RELEVANCE This cohort study found that full vaccination was associated with reduced risk of COVID-19 breakthrough infection, regardless of the immune status of patients. Despite full vaccination, persons with immune dysfunction had substantially higher risk for COVID-19 breakthrough infection than those without such a condition. For persons with immune...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.