Combined use of surface markers and functional assays to study CD4(+) T cells in sarcoidosis revealed a marked expansion of Th17.1 cells that only produce IFN-γ. These results suggest that Th17.1 cells could be misclassified as Th1 cells and may be the predominant producer of IFN-γ in pulmonary sarcoidosis, challenging the Th1 paradigm of pathogenesis.
For prostate cancer, an AGR2 urine test could be used for diagnosis. The data, although derived from a small number of samples assayed, showed that developing such a test for clinical application is viable because AGR2 is specific to cancer cells, and apparently secreted into urine.
Previously, we demonstrated concordance in differentially expressed genes in sarcoidosis blood and lung, implicating shared dysfunction of specific immune pathways. In the present study, we hypothesised that expression levels of candidate genes in sarcoidosis blood could predict and track with disease outcomes longitudinally.We applied Ingenuity Pathway Analysis to a cross-sectional derivation microarray dataset (n538) to identify canonical pathways and candidate genes associated with sarcoidosis. In a separate longitudinal sarcoidosis cohort (n5103), we serially measured 48 candidate gene transcripts, and assessed their relation to disease chronicity and severity.In the cross-sectional derivation study, pathway analysis showed upregulation of genes related to interferon signalling and the role of pattern recognition receptors, and downregulation of T-cell receptor (TCR) signalling pathways in sarcoidosis. In the longitudinal cohort, factor analysis confirmed coregulation of genes marking these pathways and identified CXCL9 as an additional candidate pathway. CXCL9 and TCR factors discriminated between chronic versus nonprogressive disease, and CXCL9 predicted disease outcomes longitudinally. Interferon factor was similarly increased in both disease phenotypes. Factors associated with lung function decline included decreased TCR factor and increased CXCL9.These findings demonstrate blood transcriptomic signatures reflecting TCR signalling and CXCL9 predict sarcoidosis chronicity and correlate with disease severity longitudinally. @ERSpublications Blood gene transcript measurements predict sarcoidosis chronicity and severity longitudinally
BackgroundIdentification of serum proteins that track with disease course in sarcoidosis may have clinical and pathologic importance. We previously identified up-regulated transcripts for interferon-inducible chemokines CXCL9, and CXCL10, in blood of sarcoidosis patients compared to controls. The objective of this study was to determine whether proteins encoded by these transcripts were elevated in serum and identified patients with remitting vs. chronic progressive sarcoidosis longitudinally.MethodsSerum levels of CXCL9, CXCL10, and proteins associated with inflammation and/or disease activity (sIL2R, ACE, ESR and CRP) were measured in a prospective cohort of sarcoidosis subjects and controls. Comparisons were made between groups and clinical course using pulmonary function measures and a severity score developed by Wasfi et al.ResultsIn a cross-sectional analysis of 36 non-immunosuppressed sarcoidosis subjects, serum CXCL9, CXCL10, and sIL2R were significantly elevated compared to 46 controls (p < 0.0001). CXCL9 and CXCL10 were strongly inter-correlated (p = 0.0009). CXCL10 and CXCL9 were inversely correlated with FVC% predicted and DLCO% predicted, respectively. CXCL10 and CXCL9 significantly correlated with sarcoidosis severity score. sIL2R, ESR, CRP, and ACE serum levels did not correlate with pulmonary function measures or severity score. In the longitudinal analysis of 26 subjects, changes in serum CXCL10 level over time corresponded with progression versus remission of disease.ConclusionsInterferon-γ–inducible chemokines, CXCL9 and CXCL10, are elevated in sarcoidosis and inter-correlated with each other. Chemokine levels correlated with measures of disease severity. Serial measurements of CXCL10 corresponded to clinical course.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.