Maintaining research and development (R&D) productivity at a sustainable level is one of the main challenges currently facing the pharmaceutical industry. In this article, we discuss the results of a comprehensive longitudinal review of AstraZeneca's small-molecule drug projects from 2005 to 2010. The analysis allowed us to establish a framework based on the five most important technical determinants of project success and pipeline quality, which we describe as the five 'R's: the right target, the right patient, the right tissue, the right safety and the right commercial potential. A sixth factor - the right culture - is also crucial in encouraging effective decision-making based on these technical determinants. AstraZeneca is currently applying this framework to guide its R&D teams, and although it is too early to demonstrate whether this has improved the company's R&D productivity, we present our data and analysis here in the hope that it may assist the industry overall in addressing this key challenge.
Background The monoclonal-antibody combination AZD7442 is composed of tixagevimab and cilgavimab, two neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that have an extended half-life and have been shown to have prophylactic and therapeutic effects in animal models. Pharmacokinetic data in humans indicate that AZD7442 has an extended half-life of approximately 90 days. Methods In an ongoing phase 3 trial, we enrolled adults (≥18 years of age) who had an increased risk of an inadequate response to vaccination against coronavirus disease 2019 (Covid-19), an increased risk of exposure to SARS-CoV-2, or both. Participants were randomly assigned in a 2:1 ratio to receive a single dose (two consecutive intramuscular injections, one containing tixagevimab and the other containing cilgavimab) of either 300 mg of AZD7442 or saline placebo, and they were followed for up to 183 days in the primary analysis. The primary safety end point was the incidence of adverse events after a single dose of AZD7442. The primary efficacy end point was symptomatic Covid-19 (SARS-CoV-2 infection confirmed by means of reverse-transcriptase–polymerase-chain-reaction assay) occurring after administration of AZD7442 or placebo and on or before day 183. Results A total of 5197 participants underwent randomization and received one dose of AZD7442 or placebo (3460 in the AZD7442 group and 1737 in the placebo group). The primary analysis was conducted after 30% of the participants had become aware of their randomized assignment. In total, 1221 of 3461 participants (35.3%) in the AZD7442 group and 593 of 1736 participants (34.2%) in the placebo group reported having at least one adverse event, most of which were mild or moderate in severity. Symptomatic Covid-19 occurred in 8 of 3441 participants (0.2%) in the AZD7442 group and in 17 of 1731 participants (1.0%) in the placebo group (relative risk reduction, 76.7%; 95% confidence interval [CI], 46.0 to 90.0; P<0.001); extended follow-up at a median of 6 months showed a relative risk reduction of 82.8% (95% CI, 65.8 to 91.4). Five cases of severe or critical Covid-19 and two Covid-19–related deaths occurred, all in the placebo group. Conclusions A single dose of AZD7442 had efficacy for the prevention of Covid-19, without evident safety concerns. (Funded by AstraZeneca and the U.S. government; PROVENT ClinicalTrials.gov number, NCT04625725 .)
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which numerous mouse models have been generated. In both AD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of -amyloid (A)-containing plaques and neurodegeneration. Characterization of the timing and nature of preplaque dysfunction is important for understanding the progression of this disease and to identify pathways and molecular targets for therapeutic intervention. Hence, we have examined the progression of dysfunction at the morphological, functional, and behavioral levels in the Tg2576 mouse model of AD. Our data show that decreased dendritic spine density, impaired long-term potentiation (LTP), and behavioral deficits occurred months before plaque deposition, which was first detectable at 18 months of age. We detected a decrease in spine density in the outer molecular layer of the dentate gyrus (DG) beginning as early as 4 months of age. Furthermore, by 5 months, there was a decline in LTP in the DG after perforant path stimulation and impairment in contextual fear conditioning. Moreover, an increase in the A42͞A40 ratio was first observed at these early ages. However, total amyloid levels did not significantly increase until Ϸ18 months of age, at which time significant increases in reactive astrocytes and microglia could be observed. Overall, these data show that the perforant path input from the entorhinal cortex to the DG is compromised both structurally and functionally, and this pathology is manifested in memory defects long before significant plaque deposition. -amyloid ͉ cognitionA lzheimer's disease (AD), a progressive neurodegenerative disease of the elderly, is the most common cause of dementia. Characteristic pathologies develop in the brain of AD patients, including senile plaques composed of -amyloid (A), neurofibrillary tangles composed of intracellular hyperphosphorylated microtubule-associated protein tau, as well as dystrophic neurites, diminished synaptic densities, and the loss of neuronal function (1). The amyloid hypothesis suggests that accumulation of A fragments 1-40 and 1-42 is primarily responsible for AD pathology, and that it is the imbalance of A production and A clearance that appears to give rise to neurofibrillary tangle formation and the cognitive impairments associated with AD (2, 3).To better understand disease progression, human amyloid precursor protein (APP) transgenic mouse lines expressing various mutations identified from patients with familial AD have been developed to model the effect of A production and deposition on glial and neuronal structure and function and on cognitive performance (4-6). These models have become crucial to understanding the role of A in AD pathology and for testing novel therapeutic strategies. To test the effects of candidate therapeutic treatments, it is necessary to recognize the type, extent, and onset of pathologies in each model. Variability across models largely reflects the backgroun...
Endocannabinoids (eCBs) function as retrograde signaling molecules at synapses throughout the brain, regulate axonal growth and guidance during development, and drive adult neurogenesis. There remains a lack of genetic evidence as to the identity of the enzyme(s) responsible for the synthesis of eCBs in the brain. Diacylglycerol lipase-␣ (DAGL␣) and - (DAGL) synthesize 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain. However, their respective contribution to this and to eCB signaling has not been tested. In the present study, we show ϳ80% reductions in 2-AG levels in the brain and spinal cord in DAGL␣ Ϫ/Ϫ mice and a 50% reduction in the brain in DAGL Ϫ/Ϫ mice. In contrast, DAGL plays a more important role than DAGL␣ in regulating 2-AG levels in the liver, with a 90% reduction seen in DAGL Ϫ/Ϫ mice. Levels of arachidonic acid decrease in parallel with 2-AG, suggesting that DAGL activity controls the steady-state levels of both lipids. In the hippocampus, the postsynaptic release of an eCB results in the transient suppression of GABAmediated transmission at inhibitory synapses; we now show that this form of synaptic plasticity is completely lost in DAGL␣ Ϫ/Ϫ animals and relatively unaffected in DAGL Ϫ/Ϫ animals. Finally, we show that the control of adult neurogenesis in the hippocampus and subventricular zone is compromised in the DAGL␣ Ϫ/Ϫ and/or DAGL Ϫ/Ϫ mice. These findings provide the first evidence that DAGL␣ is the major biosynthetic enzyme for 2-AG in the nervous system and reveal an essential role for this enzyme in regulating retrograde synaptic plasticity and adult neurogenesis.
Many neurodegenerative diseases are caused by intracellular, aggregate-prone proteins, including polyglutamine-expanded huntingtin in Huntington's disease (HD) and mutant tau in fronto-temporal dementia/tauopathy. Previously, we showed that rapamycin, an autophagy inducer, enhances mutant huntingtin fragment clearance and attenuated toxicity. Here we show much wider applications for this approach. Rapamycin enhances the autophagic clearance of different proteins with long polyglutamines and a polyalanine-expanded protein, and reduces their toxicity. Rapamycin also reduces toxicity in Drosophila expressing wild-type or mutant forms of tau and these effects can be accounted for by reductions in insoluble tau. Thus, our studies suggest that the scope for rapamycin as a potential therapeutic in aggregate diseases may be much broader than HD or even polyglutamine diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.