Purpose: The AMP-activated protein kinase (AMPK) serves as an energy sensor in eukaryotic cells and occupies a central role in linking metabolism and cancer development. However, the phosphorylation status of AMPK and its therapeutic value in human hepatocellular carcinoma (HCC) remain unclear.Experimental Design: The phosphorylation status of AMPK (Thr172) was determined by immunoblotting and immunostaining in specimens from 273 patients with HCC (including 253 patients with hepatitis B virus -related HCC). Kaplan-Meier survival analysis was used to determine the correlation with prognosis. The effects of therapeutic metformin/AMPK activation were assessed in cultured human HCC cell lines and primary HCC cells in vitro and in xenograft tumors model in vivo. To define the mechanisms of anticancer effects of metformin, we examined its influence on AMPK activation and NF-kB pathway.Results: AMPK is dysfunctional in patients with HCC, and low p-AMPK staining is correlated with aggressive clinicopathologic features and poor prognosis. Activation of AMPK by metformin not only inhibited HCC cells growth in vitro and in vivo, but also augmented cisplatin-induced growth inhibition in HCC cells. Knockdown of AMPKa expression can greatly decrease the inhibitory effect of metformin, indicating that AMPK activation is required for the anticancer action of metformin. Mechanistically, metformin/AMPK activation inhibited NF-kB signaling through upregulation of IkBa. Activation of NFkB signaling by ectopic expression of P65 or overexpression of an undegradable mutant form of IkBa attenuated the anticancer effects of metformin.Conclusions: These results present novel insight into a critical role of AMPK in HCC progression. Anticancer effects of therapeutic metformin/AMPK activation unravel metformin's potential in treatment of HCC.
In patients with hepatitis B-related HCC, adefovir antiviral therapy reduced late HCC recurrence and significantly improved overall survival after R0 hepatic resection.
Preoperative TACE did not improve surgical outcome. It resulted in drop-out from definitive surgery because of progression of disease and liver failure.
Genome-wide association studies (GWAS) have recently identified KIF1B as susceptibility locus for hepatitis B virus (HBV)–related hepatocellular carcinoma (HCC). To further identify novel susceptibility loci associated with HBV–related HCC and replicate the previously reported association, we performed a large three-stage GWAS in the Han Chinese population. 523,663 autosomal SNPs in 1,538 HBV–positive HCC patients and 1,465 chronic HBV carriers were genotyped for the discovery stage. Top candidate SNPs were genotyped in the initial validation samples of 2,112 HBV–positive HCC cases and 2,208 HBV carriers and then in the second validation samples of 1,021 cases and 1,491 HBV carriers. We discovered two novel associations at rs9272105 (HLA-DQA1/DRB1) on 6p21.32 (OR = 1.30, P = 1.13×10−19) and rs455804 (GRIK1) on 21q21.3 (OR = 0.84, P = 1.86×10−8), which were further replicated in the fourth independent sample of 1,298 cases and 1,026 controls (rs9272105: OR = 1.25, P = 1.71×10−4; rs455804: OR = 0.84, P = 6.92×10−3). We also revealed the associations of HLA-DRB1*0405 and 0901*0602, which could partially account for the association at rs9272105. The association at rs455804 implicates GRIK1 as a novel susceptibility gene for HBV–related HCC, suggesting the involvement of glutamate signaling in the development of HBV–related HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.