Memristive devices, which combine a resistor with memory functions such that voltage pulses can change their resistance (and hence their memory state) in a nonvolatile manner, are beginning to be implemented in integrated circuits for memory applications. However, memristive devices could have applications in many other technologies, such as non–von Neumann in-memory computing in crossbar arrays, random number generation for data security, and radio-frequency switches for mobile communications. Progress toward the integration of memristive devices in commercial solid-state electronic circuits and other potential applications will depend on performance and reliability challenges that still need to be addressed, as described here.
Leakage interference between memory cells is the primary obstacle for enlarging X‐point memory arrays. Metal‐filament threshold switches, possessing excellent selectivity and low leakage current, are developed in series with memory cells to reduce sneak path current and lower power consumption. However, these selectors typically have limited on‐state currents (≤10 µA), which are insufficient for memory RESET operations. Here, a strategy is proposed to achieve sufficiently large RESET current (≈2.3 mA) by introducing highly ordered Ag nanodots to the threshold switch. Compared to the Ag thin film case, Ag nanodots as active electrode could avoid excessive Ag atoms migration into solid electrolyte during operations, which causes stable conductive filament growth. Furthermore, Ag nanodots with rapid thermal processing contribute to forming multiple weak Ag filaments at a lower voltage and then spontaneous rupture as the applied voltage reduced, according to quantized conductance and simulation analysis. Impressively, the Ag nanodots based threshold switch, which is bidirectional and truly electroforming‐free, demonstrates extremely high selectivity >10
9
, ultralow leakage current <1 pA, very steep slope of 0.65 mV dec
−1
, and good thermal stability up to 200 °C, and further represents significant suppression of leakage currents and excellent performances for SET/RESET operations in the one‐selector‐one‐resistor configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.