Aqueous zinc‐ion batteries hold attractive potential for large‐scale energy storage devices owing to their prominent electrochemical performance and high security. Nevertheless, the applications of aqueous electrolytes have generated various challenges, including uncontrolled dendrite growth and parasitic reactions, thereby deteriorating the Zn anode's stability. Herein, inspired by the superior affinity between Zn2+ and amino acid chains in the zinc finger protein, a cost‐effective and green glycine additive is incorporated into aqueous electrolytes to stabilize the Zn anode. As confirmed by experimental characterizations and theoretical calculations, the glycine additives can not only reorganize the solvation sheaths of hydrated Zn2+ via partial substitution of coordinated H2O but also preferentially adsorb onto the Zn anode, thereby significantly restraining dendrite growth and interfacial side reactions. Accordingly, the Zn anode could realize a long lifespan of over 2000 h and enhanced reversibility (98.8%) in the glycine‐containing electrolyte. Furthermore, the assembled Zn||α‐MnO2 full cells with glycine‐modified electrolyte also delivers substantial capacity retention (82.3% after 1000 cycles at 2 A g‐1), showing promising application prospects. This innovative bio‐inspired design concept would inject new vitality into the development of aqueous electrolytes.
Ionic thermoelectric (i-TE) material with mobile ions as charge carriers has the potential to generate large thermal voltages at low operating temperatures. This study highlights the role of ions in i-TE hydrogels employing a poly(vinyl alcohol) (PVA) polymer matrix and a number of ion providers, e.g., KOH, KNO3, KCl, KBr, NaI, KI, and CsI. The relationship between the intrinsic physical parameters of the ion and the thermoelectric performance is established, indicating the ability to influence the hydrogen bond by the ion is a crucial factor. Among these i-TE hydrogels, the PVA/CsI hydrogel exhibits the largest ionic Seebeck coefficient, reaching 52.9 mV K–1, which is the largest of all i-TE materials reported to date. In addition, our work demonstrates the influence of ions on polymer configuration and provides an avenue for ion selection in the Soret effect in ionic thermoelectrics.
Aqueous zinc–ion batteries typically suffer from sluggish interfacial reaction kinetics and drastic cathode dissolution owing to the desolvation process of hydrated Zn2+ and continual adsorption/desorption behavior of water molecules, respectively. To address these obstacles, a bio‐inspired approach, which exploits the moderate metabolic energy of cell systems and the amphiphilic nature of plasma membranes, is employed to construct a bio‐inspired hydrophobic conductive poly(3,4‐ethylenedioxythiophene) film decorating α‐MnO2 cathode. Like plasma membranes, the bio‐inspired film can “selectively” boost Zn2+ migration with a lower energy barrier and maintain the integrity of the entire cathode. Electrochemical reaction kinetics analysis and theoretical calculations reveal that the bio‐inspired film can significantly improve the electrical conductivity of the electrode, endow the cathode–electrolyte interface with engineered hydrophobicity, and enhance the desolvation behavior of hydrated Zn2+. This results in an enhanced ion diffusion rate and minimized cathode dissolution, thereby boosting the overall interfacial reaction kinetics and cathode stability. Owing to these intriguing merits, the composite cathode can demonstrate remarkable cycling stability and rate performance in comparison with the pristine MnO2 cathode. Based on the bio‐inspired design philosophy, this work can provide a novel insight for future research on promoting the interfacial reaction kinetics and electrode stability for various battery systems.
Y6 and its derivatives have greatly improved the power conversion efficiency (PCE) of organic photovoltaics (OPVs). Further developing high‐performance Y6 derivative acceptor materials through the relationship between the chemical structures and properties of these materials will help accelerate the development of OPV. Here, machine learning and quantum chemistry are used to understand the structure–property relationships and develop new OPV acceptor materials. By encoding the molecules with an improved one‐hot code, the trained machine learning model shows good predictive performance, and 22 new acceptors with predicted PCE values greater than 17% within the virtual chemical space are screened out. Trends associated with the discovered high‐performing molecules suggest that Y6 derivatives with medium‐length side chains have higher performance. Further quantum chemistry calculations reveal that the end acceptor units mainly affect the frontier molecular orbital energy levels and the electrostatic potential on molecular surface, which in turn influence the performance of OPV devices. A series of promising Y6 derivative candidates is screened out and a rational design guide for developing high‐performance OPV acceptors is provided. The approach in this work can be extended to other material systems for rapid materials discovery and can provide a framework for designing novel and promising OPV materials.
The Seebeck coefficient of Fe2+/3+ thermogalvanic cells is inversely proportional to the donor number of organic solvent additives, which cause rearrangement of the Fe2+/3+ solvent shell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.