The novel COVID-19 outbreak has affected more than 200 countries and territories as of March 2020. Given that patients with cancer are generally more vulnerable to infections, systematic analysis of diverse cohorts of patients with cancer affected by COVID-19 is needed. We performed a multicenter study including 105 patients with cancer and 536 age-matched noncancer patients confirmed with COVID-19. Our results showed COVID-19 patients with cancer had higher risks in all severe outcomes. Patients with hematologic cancer, lung cancer, or with metastatic cancer (stage IV) had the highest frequency of severe events. Patients with nonmetastatic cancer experienced similar frequencies of severe conditions to those observed in patients without cancer. Patients who received surgery had higher risks of having severe events, whereas patients who underwent only radiotherapy did not demonstrate significant differences in severe events when compared with patients without cancer. These findings indicate that patients with cancer appear more vulnerable to SARS-COV-2 outbreak.SIgnIfICAnCe: Because this is the first large cohort study on this topic, our report will provide muchneeded information that will benefit patients with cancer globally. As such, we believe it is extremely important that our study be disseminated widely to alert clinicians and patients.
Coronavirus, uses the Angiotensin Converting Enzyme-2 Receptor to enter airway cells. Viral endocytosis is mediated by several factors, including clathrin, the adaptor protein-2 complex (AP2) and the adaptor-associated kinase-1 (AAK1). 2 According to a recent report, 3 COVID-19, the disease caused by SARS-CoV-2, is characterized by three clinical patterns: no symptoms, mild to moderate disease, severe pneumonia requiring admission to Intensive Care Unit (ICU) in up to 31% of the patients. 3 Thus far, there is no specific therapy for COVID-19 infection. No benefit of lopinavir-ritonavir treatment resulted in a recent trial. 4 Hydroxychloroquine, currently used in view of its "in vitro" observed effect of reduction of viral replication, seems unsatisfactory. 5 Elevated proinflammatory cytokine/chemokine responses seem associated with respiratory failure. 3 Recently, tocilizumab, an interleukin-6 inhibitor, was reported as effective in patients with severe COVID-19 pneumonia. 6 Baricitinib, another inhibitor of cytokine-release, seems an interesting anti-inflammatory drug. It is a Janus kinase inhibitor (anti-JAK) licensed for the treatment of rheumatoid arthritis (RA) with good efficacy and safety records. 7 Moreover it seems to have anti-viral effects by its affinity for AP2-associated protein AAK1, reducing SARS-CoV-2 endocytosis. 8 On this basis, we assessed the safety of baricitinib therapy combined with lopinavir-ritonavir in moderate COVID-19 pneumonia patients and we evaluated its clinical impact.All consecutive hospitalized patients (March 16th −30th) with moderate COVID-19 pneumonia, older than 18 years, were treated for 2 weeks with baricitinib tablets 4 mg/day added to ritonavir-lopinavir therapy. The last consecutive patients with moderate COVID-19 pneumonia receiving standard of care therapy (lopinavir/ritonavir tablets 250 mg/bid and hydroxychloroquine 400 mg/day/orally for 2 weeks) admitted before the date of the first baricitinib-treated patient served as controls. Antibiotics were scheduled only in the case of suspected bacterial infection.Inclusion criteria were: a. SARS-Co-V2 positivity in the nasal/oral swabs; b. presence of at least 3 of the following symptoms: fever, cough, myalgia, fatigue; c. evidence of radiological pneumonia . After discharge, patients treated with baricitinib were planned to be followed for additional 6 weeks. Exclusion criteria: history of thrombophlebitis (TP), latent tuberculosis infection (QuantiFERON Plus-test positivity, Qiagen, Germany 9 ), pregnancy and lactation.Mild to moderate COVID-19 disease definition: presence of bilateral pneumonia with or without ground glass opacity and in absence of consolidation, not requiring intubation at enrollment; arterial oxygen saturation (SpO2) > 92% at room-air, and ratio arterial oxygen partial pressure/fractional inspired oxygen (PaO2/FiO2) 10 0-30 0 mmHg. Parameters daily accessed were: fever, pulmonary function, Modified Early Warning Score (MEWS), 10 pulse rate, blood pressure. After the initial execution, r...
COVID-19 remains a serious emerging global health problem, and little is known about the role of oropharynx commensal microbes in infection susceptibility and severity. Here, we present the oropharyngeal microbiota characteristics identified by shotgun metagenomic sequencing analyses of oropharynx swab specimens from 31 COVID-19 patients, 29 influenza B patients, and 28 healthy controls. Our results revealed a distinct oropharyngeal microbiota composition in the COVID-19 patients, characterized by enrichment of opportunistic pathogens such as Veillonella and Megasphaera and depletion of Pseudopropionibacterium, Rothia, and Streptococcus. Based on the relative abundance of the oropharyngeal microbiome, we built a microbial classifier to distinguish COVID-19 patients from flu patients and healthy controls with an AUC of 0.889, in which Veillonella was identified as the most prominent biomarker for COVID-19 group. Several members of the genus Veillonella, especially Veillonella parvula which was highly enriched in the oropharynx of our COVID-19 patients, were also overrepresented in the BALF of COVID-19 patients, indicating that the oral cavity acts as a natural reservoir for pathogens to induce co-infections in the lungs of COVID-19 patients. We also found the increased ratios of Klebsiella sp., Acinetobacter sp., and Serratia sp. were correlated with both disease severity and elevated systemic inflammation markers (neutrophil–lymphocyte ratio, NLR), suggesting that these oropharynx microbiota alterations may impact COVID-19 severity by influencing the inflammatory response. Moreover, the oropharyngeal microbiome of COVID-19 patients exhibited a significant enrichment in amino acid metabolism and xenobiotic biodegradation and metabolism. In addition, all 26 drug classes of antimicrobial resistance genes were detected in the COVID-19 group, and were significantly enriched in critical cases. In conclusion, we found that oropharyngeal microbiota alterations and functional differences were associated with COVID-19 severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.