Four types of colloidal semiconductor CdTe magic-size clusters (MSCs), each of which is in a single-ensemble form, have been obtained at room temperature from a single induction period (IP) sample in dispersion. The induction period is the prenucleation stage that occurs prior to nucleation and growth of colloidal quantum dots (QDs). Three types display sharp optical absorption peaking at either 371, 417, or 448 nm, and the fourth type exhibits a sharp absorption doublet with peaks at 350 and 371 nm. These MSCs are respectively denoted as sMSC-371, sMSC-417, sMSC-448, and dMSC-371. We show that the evolution of the various MSCs is affected by the nature of their dispersions. We hypothesize that the evolution of MSCs involves their precursor compounds (PCs), which are transparent in optical absorption. The present study explores new avenues for the exclusive synthesis of four types of CdTe MSCs (with each in a single-ensemble form) and provides an improved understanding for their formation.
Colloidal semiconductor magic-size clusters (MSCs), a crucial link between molecular and bulk materials, have attracted attention in the past three decades. However, the identification of their nonbandgap electronic transitions via optical absorption has been challenging due to the possible presence of other-bandgap ensembles in synthetic batches. For CdSe MSC-415, referred to as the optical absorption (1S(e)-1S(h)) in nanometers of wavelength, we report our exploration on the origin of two commonly documented absorption peaks at 381 and 351 nm. We show that the evolution of the two peaks does not synchronize with that of the ∼415 nm peak and seems to be respectively related to the disappearance of MSC-391 and MSC-361. Accordingly, these two peaks detected are probably not due to higher order electronic transitions in MSC-415. The present study shows the necessity of re-evaluating previous experimental results and of developing advanced theoretical models to better understand the quantized energy levels of MSCs.
Conspectus A knowledge of colloidal semiconductor magic-size clusters (MSCs) is essential for understanding how fundamental properties evolve during transformations from individual molecules to semiconductor quantum dots (QDs). Compared to QDs, MSCs display much narrower optical absorption bands; the higher cluster stability gives rise to a narrower size distribution. During the production of binary QDs such as II–VI metal (M) chalcogenide (E) ones, binary ME MSCs observed were interpreted as side products and/or the nuclei of QDs. Prior to the current development of our two-step approach followed by our two-pathway model, it had been extremely challenging to synthesize MSCs as a unique product without the nucleation and growth of QDs. With the two-step approach, we have demonstrated that MSCs can be readily engineered as a sole product at room temperature from a prenucleation stage sample, also called an induction period (IP) sample. It is important that we were able to discover that the evolution of the MSCs follows first-order reaction kinetics behavior. Accordingly, we proposed that a new type of compound, termed as “precursor compounds” (PCs) of MSCs, was produced in an IP sample. Such PCs are optically transparent at the absorption peak positions of their MSC counterparts as well as to longer wavelengths. It is thought that quasi isomerization of a single PC results in the development of one MSC. In this Account, we provide an overview of our latest advances regarding the transformations among binary CdE MSCs as well as from binary CdTe to ternary CdTeSe MSCs. Optical absorption spectroscopy has been employed to study these transformations, all of which display well-defined isosbestic points. We have proposed that these MSC to MSC transformations occur via their corresponding PCs, also called immediate PCs. It is reasonable that the as-synthesized PC (in an IP sample) and the immediate PC (in an incubated and/or diluted sample) probably have different configurations. A transformation between two PCs may involve an intermolecular reaction, with either first-order reaction kinetics or a more complicated time profile. A transformation between one immediate PC and its counterpart MSC may contain an intramolecular reaction. The present Account, which addresses the PC-enabled MSC transformations with isosbestic points probed by optical absorption spectroscopy, calls for more experimental and theoretical attention to understand these magic species and their transformation processes more precisely.
Rheumatoid arthritis (RA) is a chronic, systemic, progressive autoimmune disease. The vascular permeability of inflamed joints in RA makes it a natural candidate for passive targeting, similar to the enhanced permeability and retention (EPR) effect in solid tumors. Thus, various therapeutic drugs have been encapsulated in nanocarriers to achieve longer in vivo circulation times and improve RA targeting. Although liposomes are the most widely used nanocarriers for RA treatment, the effects of physical and chemical characteristics of liposomes, such as particle sizes, surface charge, polyethylene glycol (PEG) chain length, and PEG concentration, on their passive RA targeting effect have not been fully elucidated. Here, we systematically investigated the effects of physical and chemical properties of liposomes on circulation time and conducted preliminary studies on their passive targeting mechanisms. A series of liposomes with different particle sizes (70, 100, 200, and 350 nm), surface charges (positive, negative, slight positive, and slight negative), PEG chain lengths (1, 2, and 5 kDa), and concentrations (5, 10, and 20% w/w of total lipid) were prepared by lipid film dispersion and extrusion. The pharmacokinetics of liposomes with different formulas were evaluated with a fluorescence microplate reader. A collagen-induced arthritis (CIA) mouse model was utilized to mimic RA pathological conditions and to evaluate the targeting and efficacy of liposomes with different properties using a near-infrared fluorescence imaging system. Uptake of fluorescent liposomes by various synovial cells was measured by flow cytometry. The results indicated that liposomes with 100 nm diameter, a slight negative charge, and 10% incorporation of 5 kDa PEG had better in vivo circulation time and inflamed joint targeting than did other liposomes. Dexamethasone (Dex) was encapsulated into optimized liposomes as an active ingredient for RA treatment. Pharmacodynamic studies demonstrated that Dex liposomes could significantly improve the antiarthritic efficacy of Dex in a CIA mouse model of RA. This study also found that the retention mechanism of RA was mainly increased because of the uptake of liposomes by fibroblasts and macrophages in inflamed joints. This study provides a persuasive explanation for passive RA targeting by liposomes and advances our ability to treat RA with nanomedicine.
The transformation of colloidal semiconductor magic-size clusters (MSCs) from zinc to cadmium chalcogenide (ZnE to CdE) at low temperatures has received scant attention. Here, we report the first room-temperature evolution of CdE MSCs from ZnE samples and our interpretation of the transformation pathway. We show that when prenucleation stage samples of ZnE are mixed with cadmium oleate (Cd(OA)2), CdE MSCs evolve; without this mixing, ZnE MSCs develop. When ZnE MSCs and Cd(OA)2 are mixed, CdE MSCs also form. We propose that Cd(OA)2 reacts with the precursor compounds (PCs) of the ZnE MSCs but not directly with the ZnE MSCs. The cation exchange reaction transforms the ZnE PCs into CdE PCs, from which CdE MSCs develop. Our findings suggest that in reactions that lead to the production of binary ME quantum dots, the E precursor dominates the formation of binary ME PCs (M = Zn or Cd) to have similar stoichiometry. The present study provides a much more profound view of the formation and transformation mechanisms of the ME PCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.