BackgroundIncreasing evidence has demonstrated the functional relevance of long non-coding RNAs (lncRNAs) to immunity regulation and the tumor microenvironment in non-small cell lung cancer (NSCLC). However, tumor immune infiltration-associated lncRNAs and their value in improving clinical outcomes and immunotherapy remain largely unexplored.MethodsWe developed a computational approach to identify an lncRNA signature (TILSig) as an indicator of immune cell infiltration in patients with NSCLC through integrative analysis for lncRNA, immune and clinical profiles of 115 immune cell lines, 187 NSCLC cell lines and 1533 patients with NSCLC. Then the influence of the TILSig on the prognosis and immunotherapy in NSCLC was comprehensively investigated.ResultsComputational immune and lncRNA profiling analysis identified an lncRNA signature (TILSig) consisting of seven lncRNAs associated with tumor immune infiltration. The TILSig significantly stratified patients into the immune-cold group and immune-hot group in both training and validation cohorts. These immune-hot patients exhibit significantly improved survival outcome and greater immune cell infiltration compared with immune-cold patients. Multivariate analysis revealed that the TILSig is an independent predictive factor after adjusting for other clinical factors. Further analysis accounting for TILSig and immune checkpoint gene revealed that the TILSig has a discriminatory power in patients with similar expression levels of immune checkpoint genes and significantly prolonged survival was observed for patients with low TILSig and low immune checkpoint gene expression implying a better response to immune checkpoint inhibitor (ICI) immunotherapy.ConclusionsOur finding demonstrated the importance and value of lncRNAs in evaluating the immune infiltrate of the tumor and highlighted the potential of lncRNA coupled with specific immune checkpoint factors as predictive biomarkers of ICI response to enable a more precise selection of patients.
Accumulating evidence demonstrates that long non-coding RNAs (lncRNAs) play important roles in the development and progression of complex human diseases, and predicting novel human lncRNA-disease associations is a challenging and urgently needed task, especially at a time when increasing amounts of lncRNA-related biological data are available. In this study, we proposed a global network-based computational framework, RWRlncD, to infer potential human lncRNA-disease associations by implementing the random walk with restart method on a lncRNA functional similarity network. The performance of RWRlncD was evaluated by experimentally verified lncRNA-disease associations, based on leave-one-out cross-validation. We achieved an area under the ROC curve of 0.822, demonstrating the excellent performance of RWRlncD. Significantly, the performance of RWRlncD is robust to different parameter selections. Predictively highly-ranked lncRNA-disease associations in case studies of prostate cancer and Alzheimer's disease were manually confirmed by literature mining, providing evidence of the good performance and potential value of the RWRlncD method in predicting lncRNA-disease associations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.