This article presents research on destructive environmental mechanisms affecting the murals in the Mogao Grottoes, specifically Grotto 72, from a meteorological perspective. Analysis of outside monitoring data during [1999][2000][2001][2002][2003][2004][2005][2006][2007][2008] shows that condensation of moisture and/or salt deliquescence on the mural affects a high percentage of the internal grotto, whereas the interchange of moisture between the interior grotto and the surrounding air accounts for a relatively small effect. But high humidity was the threat to the mural, so the planting of the shelterbelts was a new threat to the mural due to irrigation of shelterbelts. The higher relative humidity (RH) produced by shelterbelts in front of the grottoes is only weakly related to local precipitation but is highly correlated with the times of water irrigation of those shelterbelts. The intra-seasonal variability of temperature and RH on the mural surface is relatively stable because temperature inversion frequently occurs in the internal grotto and is favourable for maintenance of stable air stratification that is beneficial to the preservation of the wall paintings. Using ridge regression estimation of the period data, coupling equations of the change of temperature and humidity on the mural surface, the internal grotto air and the external environment are obtained. The real-time dynamics of temperature and humidity are thus analysed and reported here, offering a scientific basis for establishing a long-term monitoring network in the Mogao Grottoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.