Dysfunction of Tumour Suppressor Genes (TSGs) is a common feature in carcinogenesis. Epigenetic abnormalities including DNA hypermethylation or aberrant histone modifications in promoter regions have been described for interpreting TSG inactivation. However, in many instances, how TSGs are silenced in tumours are largely unknown. Given that miRNA with low expression in tumours is another recognized signature, we hypothesize that low expression of miRNA may reduce the activity of TSG related enhancers and further lead to inactivation of TSG during cancer development. Here, we reported that low expression of miRNA in cancer as a recognized signature leads to loss of function of TSGs in breast cancer. In 157 paired breast cancer and adjacent normal samples, tumour suppressor gene GPER1 and miR-339 are both downregulated in Luminal A/B and Triple Negative Breast Cancer subtypes. Mechanistic investigations revealed that miR-339 upregulates GPER1 expression in breast cancer cells by switching on the GPER1 enhancer, which can be blocked by enhancer deletion through the CRISPR/Cas9 system. Collectively, our findings reveal novel mechanistic insights into TSG dysfunction in cancer development, and provide evidence that reactivation of TSG by enhancer switching may be a promising alternative strategy for clinical breast cancer treatment.
Boron−dipyrromethenes (Bodipys), since first reported in 1968, have emerged as a fascinating class of dyes in the past few decades due to their excellent photophysical properties including bright fluorescence, narrow emission bandwidth, resistance to photobleaching, and environment insensitivity. However, typical Bodipys are highly lipophilic, which often results in nonfluorescent aggregates in aqueous solution and also severely limits their bioavailability to cells and tissues. In this work, based on a simple one-atom B → C replacement in the Bodipy scaffold, we present a new class of carbon−dipyrromethenes (Cardipys for short) fluorescent dyes with tunable emission wavelengths covering the visible and nearinfrared regions. These Cardipys not only retain the excellent photophysical properties of conventional Bodipys but also show improved water solubility and photostability due to their cationic character. Moreover, the cationic character also makes them extremely easy to penetrate the cell membrane and specifically accumulate into mitochondria without resorting to any mitochondriatargeted groups. Interestingly, several Cardipys bearing active styryl groups could serve as fluorescent indicators to map cellular trafficking of the glutathione conjugates produced within mitochondria under the catalysis of glutathione S-transferase (GST), thus showing potential in either exploring the detoxification mechanism of the mitochondrial GST/GSH system or evaluating the drug resistance of cancer cells that is closely related with GST activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.