Persistent inflammatory responses participate in the pathogenesis of adverse ventricular remodeling after myocardial infarction (MI). We hypothesized that regulatory T (Treg) cells modulate inflammatory responses, attenuate ventricular remodeling and subsequently improve cardiac function after MI. Acute MI was induced by ligation of the left anterior descending coronary artery in rats. Infiltration of Foxp3(+) Treg cells was detected in the infarcted heart. Expansion of Treg cells in vivo by means of adoptive transfer as well as a CD28 superagonistic antibody (JJ316) resulted in an increased number of Foxp3(+) Treg cells in the infarcted heart. Subsequently, rats with MI showed improved cardiac function following Treg cells transfer or JJ316 injection. Interstitial fibrosis, myocardial matrix metalloproteinase-2 activity and cardiac apoptosis were attenuated in the rats that received Treg cells transfer. Infiltration of neutrophils, macrophages and lymphocytes as well as expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were also significantly decreased, and the CD8(+) cardiac-specific cytotoxic T lymphocyte response was inhibited. Expression of interleukin (IL)-10 in the heart, however, was increased. Additional studies in vitro indicated that Treg cells directly protect neonatal rat cardiomyocytes against LPS-induced apoptosis, and this protection depends on the cell-cell contact and IL-10 expression. Furthermore, Treg cells inhibited proinflammatory cytokines production by cardiomyocytes. These data demonstrate that Treg cells serve to protect against adverse ventricular remodeling and contribute to improve cardiac function after myocardial infarction via inhibition of inflammation and direct protection of cardiomyocytes.
Background: Regulatory T cells (Tregs), traditionally recognized as potent suppressors of immune response, are increasingly attracting attention because of a second major function: residing in parenchymal tissues and maintaining local homeostasis. However, the existence, unique phenotype and function of so-called tissue Tregs in the heart remain unclear. Methods: In mouse models of myocardial infarction (MI), myocardial ischemia/reperfusion injury (I/R injury) or cardiac cryoinjury, the dynamic accumulation of Tregs in the injured myocardium was monitored. The bulk RNA-sequencing was performed to analyze the transcriptomic characteristics of Tregs from the injured myocardium after MI or I/R injury. Photoconversion, parabiosis, single-cell TCR sequencing and adoptive transfer were applied to determine the source of heart Tregs. The involvement of the interleukin (IL)-33/ST2 axis and secreted acidic cysteine rich glycoprotein (Sparc), a molecule upregulated in heart Tregs, was further evaluated in functional assays. Results: We showed that Tregs were highly enriched in the myocardium of MI, I/R injury and cryoinjury mice. Transcriptomic data revealed that Tregs isolated from the injured hearts had plenty of differentially expressed transcripts compared to their lymphoid counterparts including heart draining lymphoid nodes, with a phenotype of promoting infarct repair, indicating a unique characteristic. The heart Tregs were accumulated mainly due to recruitment from circulating Treg pool, while local proliferation also contributed to their expansion. Moreover, a remarkable case of repeatedly detected TCR of heart Tregs, more than that of spleen Tregs, suggests a model of clonal expansion. Besides, Helios high Nrp-1 high phenotype proved the mainly thymic origin of heart Tregs, with a small contribution of phenotypic conversion of conventional CD4 + T cells (Tconvs), proved by the analysis of TCR repertoires and Tconvs adoptive transfer experiments. Notably, the IL-33/ST2 axis was essential for sustaining heart Treg populations. Finally, we demonstrated that Sparc, which was highly expressed by heart Tregs, acted as a critical factor to protect the heart against MI by increasing collagen content and boosting maturation in the infarct zone. Conclusions: We identified and characterized a phenotypically and functionally unique population of heart Tregs, which may lay the foundation to harness Tregs for cardioprotection in MI and other cardiac diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.