Escalation (macroevolutionary increase) or divergence (disparity between relatives) in trait values are two frequent outcomes of the plant-herbivore arms race. We studied the defences and caterpillars associated with 21 sympatric New Guinean figs. Herbivore generalists were concentrated on hosts with low protease and oxidative activity. The distribution of specialists correlated with phylogeny, protease and trichomes. Additionally, highly specialised Asota moths used alkaloid rich plants. The evolution of proteases was conserved, alkaloid diversity has escalated across the studied species, oxidative activity has escalated within one clade, and trichomes have diverged across the phylogeny. Herbivore specificity correlated with their response to host defences: escalating traits largely affected generalists and divergent traits specialists; but the effect of escalating traits on extreme specialists was positive. In turn, the evolution of defences in Ficus can be driven towards both escalation and divergence in individual traits, in combination providing protection against a broad spectrum of herbivores.
1. In the fig (Moraceae) and fig-wasp (Agaonidae) mutualism, scent is believed to be of primary importance in pollinator attraction and maintenance of species specificity. Scent divergence between closely related Ficus species seems sufficient in promoting reproductive isolation through pollinator behaviour, starting the process of speciation. 2. We investigated volatile organic compound (VOC) variation from figs in several Ficus species endemic to Papua New Guinea. Sister species of section Papuacyse and subspecies of Ficus trichocerasa substitute each other along the continuously forested Mt. Wilhelm elevational gradient. We placed these species in a phylogenetic context to draw conclusions of scent divergence between close relatives. In addition, pollinator response to VOCs emitted by figs of different species was tested. 3. Volatile profiles differed significantly between focal species, although with a varying degree of overlap between (sub)species and elevations. Pollinators were generally attracted to VOCs emitted only by their hosts except in one case where pollinating fig wasps were also attracted to the sister species of its host. Wasp morphological traits, however, indicate that it is mechanically impossible for this species to oviposit in figs of this atypical encounter. 4. Synthesis. This study demonstrates that while scent is an effective signal for partner recognition, there are multiple barriers which help maintain prepollination isolation in fig and pollinating fig-wasp interactions. Speciation along this elevational gradient is reinforced by divergence in key reproductive isolation mechanisms on both sides of the mutualism. K E Y W O R D S character divergence, evolutionary ecology, fig pollination, fig-wasp attraction, reproductive isolation, sister species, speciation, volatile organic compounds (VOCs) | 2257 Journal of Ecology SOUTO-VILARÓS eT AL.
Classic research on elevational gradients in plant–herbivore interactions holds that insect herbivore pressure is stronger under warmer climates of low elevations. However, recent work has questioned this paradigm, arguing that it oversimplifies the ecological complexity in which plant–insect herbivore interactions are embedded. Knowledge of antagonistic networks of plants and herbivores is however crucial for understanding the mechanisms that govern ecosystem functioning. We examined herbivore damage and insect herbivores of eight species of genus Ficus (105 saplings) and plant constitutive defensive traits of two of these species, along a rain forest elevational gradient of Mt. Wilhelm (200–2,700 m a.s.l.), in tropical Papua New Guinea. We report overall herbivore damage 2.4% of leaf area, ranging from 0.03% in Ficus endochaete at 1,700 m a.s.l. to 6.1% in F. hombroniana at 700 m a.s.l. Herbivore damage and herbivore abundances varied significantly with elevation, as well as among the tree species, and between the wet and dry season. Community‐wide herbivore damage followed a hump‐shaped pattern with the peak between 700 and 1,200 m a.s.l. and this pattern corresponded with abundance of herbivores. For two tree species surveyed in detail, we observed decreasing and hump‐shaped patterns in herbivory, in general matching the trends found in the set of plant defenses measured here. Our results imply that vegetation growing at mid‐elevations of the elevational gradient, that is at the climatically most favorable elevations where water is abundant, and temperatures still relatively warm, suffers the maximum amount of herbivorous damage which changes seasonally, reflecting the water availability.
Even though speciation involving multiple interacting partners, such as plants and their pollinators, has attracted much research, most studies focus on isolated phases of the process. This currently precludes an integrated understanding of the mechanisms leading to cospeciation. Here, we examine population genetic structure across six species‐pairs of figs and their pollinating wasps along an elevational gradient in New Guinea. Specifically, we test three hypotheses on the genetic structure within the examined species‐pairs and find that the hypothesized genetic structures represent different phases of a single continuum, from incipient cospeciation to the full formation of new species. Our results also illuminate the mechanisms governing cospeciation, namely that fig wasps tend to accumulate population genetic differences faster than their figs, which initially decouples the speciation dynamics between the two interacting partners and breaks down their one‐to‐one matching. This intermediate phase is followed by genetic divergence of both partners, which may eventually restore the one‐to‐one matching among the fully formed species. Together, these findings integrate current knowledge on the mechanisms operating during different phases of the cospeciation process. They also reveal that the increasingly reported breakdowns in one‐to‐one matching may be an inherent part of the cospeciation process. Mechanistic understanding of this process is needed to explain how the extraordinary diversity of species, especially in the tropics, has emerged. Knowing which breakdowns in species interactions are a natural phase of cospeciation and which may endanger further generation of diversity seems critical in a constantly changing world.
Elevational gradients affect the production of plant secondary metabolites through changes in both biotic and abiotic conditions. Previous studies have suggested both elevational increases and decreases in host-plant chemical defences. We analysed the correlation of alkaloids and polyphenols with elevation in a community of nine Ficus species along a continuously forested elevational gradient in Papua New Guinea. We sampled 204 insect species feeding on the leaves of these hosts and correlated their community structure to the focal compounds. Additionally, we explored species richness of folivorous mammals along the gradient. When we accounted for Ficus species identity, we found a general increase in flavonoids and alkaloids. Elevational trends in non-flavonol polyphenols were less pronounced or showed non-linear correlations with elevation. The abundance of insect herbivores decreased with elevation, while the species richness of folivorous mammals showed an elevational increase. Insect community structure was affected mainly by alkaloid concentration and diversity. Although our results show an elevational increase in several groups of metabolites, the drivers behind these trends likely differ. Flavonoids probably provide figs with protection against abiotic stressors, such as UV-irradiation. In contrast, alkaloids affect insect herbivores and may provide protection against mammalian herbivores and pathogens. Concurrent analysis of multiple compound groups alongside ecological data is an important approach for understanding the selective landscape that shapes plant defences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.