IntroductionFew studies have performed expression profiling of both miRNA and mRNA from the same primary breast carcinomas. In this study we present and analyze data derived from expression profiling of 799 miRNAs in 101 primary human breast tumors, along with genome-wide mRNA profiles and extensive clinical information.MethodsWe investigate the relationship between these molecular components, in terms of their correlation with each other and with clinical characteristics. We use a systems biology approach to examine the correlative relationship between miRNA and mRNAs using statistical enrichment methods.ResultsWe identify statistical significant differential expression of miRNAs between molecular intrinsic subtypes, and between samples with different levels of proliferation. Specifically, we point to miRNAs significantly associated with TP53 and ER status. We also show that several cellular processes, such as proliferation, cell adhesion and immune response, are strongly associated with certain miRNAs. We validate the role of miRNAs in regulating proliferation using high-throughput lysate-microarrays on cell lines and point to potential drivers of this process.ConclusionThis study provides a comprehensive dataset as well as methods and system-level results that jointly form a basis for further work on understanding the role of miRNA in primary breast cancer.
Androgen receptor (AR) is expressed in all stages of prostate cancer progression, including in castrationresistant tumors. Eliminating AR function continues to represent a focus of therapeutic investigation, but AR regulatory mechanisms remain poorly understood. To systematically characterize mechanisms involving microRNAs (miRNAs), we conducted a gain-of function screen of 1129 miRNA molecules in a panel of human prostate cancer cell lines and quantified changes in AR protein content using protein lysate microarrays. In this way, we defined 71 unique miRNAs that influenced the level of AR in human prostate cancer cells. RNA sequencing data revealed that the 3 0 UTR of AR (and other genes) is much longer than currently used in miRNA target prediction programs. Our own analyses predicted that most of the miRNA regulation of AR would target an extended 6 kb 3 0 UTR. 3 0 UTR-binding assays validated 13 miRNAs that are able to regulate this long AR 3'UTR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.