Ca 2؉ signals are thought to play important roles in plant growth and development, including key aspects of pollen tube growth and fertilization. The dynamics of a Ca 2؉ signal are largely controlled by influx (through channels) and efflux (through pumps and antiporters). The Arabidopsis genome encodes 14 Ca 2؉ pumps, 10 of which belong to a family of autoinhibited Ca 2؉ ATPases (ACA) that are predicted to be activated by Ca 2؉ ͞calmodulin. Here, we show that isoform ACA9 is expressed primarily in pollen and localized to the plasma membrane. Three independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] gene disruptions of ACA9 were found to result in partial male sterility. Complementation was observed by using a ACA9-yellow fluorescence protein (YFP) fusion that displayed plasma membrane localization. Mutant aca9 pollen displayed a reduced growth potential and a high frequency of aborted fertilization, resulting in a >80% reduction in seed set. These findings identify a plasma membrane Ca 2؉ transporter as a key regulator of pollen development and fertilization in flowering plants.
Transcriptional feedback loops are a feature of circadian clocks in both animals and plants. We show that the plant circadian clock also incorporates the cytosolic signaling molecule cyclic adenosine diphosphate ribose (cADPR). cADPR modulates the circadian oscillator's transcriptional feedback loops and drives circadian oscillations of Ca2+ release. The effects of antagonists of cADPR signaling, manipulation of cADPR synthesis, and mathematical simulation of the interaction of cADPR with the circadian clock indicate that cADPR forms a feedback loop within the plant circadian clock.
Phospholipid flipping across cellular membranes contributes to vesicle biogenesis in eukaryotes and involves flippases (P4-ATPases). However, the minimal composition of the flippase machinery remains to be determined. We demonstrate that cellular targeting and lipid specificity of P4-ATPases require the α-subunit but are independent of the β-subunit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.