Oxidative stress is involved in a variety of diseases. Prospective studies investigating the relationship between oxidative stress biomarkers and the status and development of colorectal cancer (CRC) are scarce; previous studies have failed to establish a relationship between the serum total oxidant/antioxidant status and CRC. Therefore, we compared the total serum oxidant/antioxidant levels of CRC patients and healthy subjects, and analyzed their clinical significance in the CRC. Fasting blood samples from 132 CRC patients and 64 healthy subjects were collected. Oxidative stress parameters, including total oxidant status (TOS) and total antioxidant status (TAS), were measured, and the oxidative stress index (OSI) was calculated. The TOS and OSI levels increased significantly (P<0.001) and the TAS level significantly decreased (P<0.001) in the CRC group compared to those in the healthy control group. Oxidative stress parameters differed significantly depending on the patient’s smoking and drinking status (P<0.05). The preoperative and postoperative levels of TOS, TAS, and OSI did not differ significantly between primary sites (colon/rectum) and clinical stages (P>0.05).However, the levels of TOS, TAS, and OSI were significantly different between patients with no metastasis and those with metastases to two organs (P<0.05) Finally, the parameters are affected by smoking and drinking, and subsequent research should be conducted excluding the relevant influencing factors.
Chronic inflammation and an immunosuppressive microenvironment promote prostate cancer (PCa) progression and diminish the response to immune checkpoint blockade (ICB) therapies. However, it remains unclear how and to what extent these two events are coordinated. Here, we show that ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, functions downstream of inflammation-induced IKKβ activation to shape the immunosuppressive tumor microenvironment (TME). Prostate-specific deletion of Arid1a cooperates with Pten loss to accelerate prostate tumorigenesis. We identify polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) as the major infiltrating immune cell type that causes immune evasion and reveal that neutralization of PMN-MDSCs restricts the progression of Arid1a-deficient tumors. Mechanistically, inflammatory cues activate IKKβ to phosphorylate ARID1A, leading to its degradation via β-TRCP. ARID1A downregulation in turn silences the enhancer of A20 deubiquitinase, a critical negative regulator of NF-κB signaling, and thereby unleashes CXCR2 ligand-mediated MDSC chemotaxis. Importantly, our results support the therapeutic strategy of anti-NF-κB antibody or targeting CXCR2 combined with ICB for advanced PCa. Together, our findings highlight that the IKKβ/ARID1A/NF-κB feedback axis integrates inflammation and immunosuppression to promote PCa progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.