T cell–mediated immune response plays a crucial role in controlling Trypanosoma cruzi infection and parasite burden, but it is also involved in the clinical onset and progression of chronic Chagas’ disease. Therefore, the study of T cells is central to the understanding of the immune response against the parasite and its implications for the infected organism. The complexity of the parasite–host interactions hampers the identification and characterization of T cell–activating epitopes. We approached this issue by combining in silico and in vitro methods to interrogate patients’ T cells specificity. Fifty T. cruzi peptides predicted to bind a broad range of class I and II HLA molecules were selected for in vitro screening against PBMC samples from a cohort of chronic Chagas’ disease patients, using IFN-γ secretion as a readout. Seven of these peptides were shown to activate this type of T cell response, and four out of these contain class I and II epitopes that, to our knowledge, are first described in this study. The remaining three contain sequences that had been previously demonstrated to induce CD8+ T cell response in Chagas’ disease patients, or bind HLA-A*02:01, but are, in this study, demonstrated to engage CD4+ T cells. We also assessed the degree of differentiation of activated T cells and looked into the HLA variants that might restrict the recognition of these peptides in the context of human T. cruzi infection.
Trypanosoma cruzi, the aetiological agent of Chagas disease, has a highly efficient detoxification system to deal with the oxidative burst imposed by its host. One of the antioxidant enzymes involved is the cytosolic tryparedoxin peroxidase (c-TXNPx), which catalyses the reduction to hydrogen peroxide, small-chain organic hydroperoxides and peroxynitrite. This enzyme is present in all parasite stages, and its overexpression renders parasites more resistant to the oxidative defences of macrophages, favouring parasite survival. This work addressed the study of the specific humoral and cellular immune response triggered by c-TXNPx in human natural infection. Thus, sera and peripheral blood mononuclear cells (PBMC) were collected from chronically infected asymptomatic and cardiac patients, and non-infected individuals. Results showed that levels of IgG antibodies against c-TXNPx were low in sera from individuals across all groups. B-cell epitope prediction limited immunogenicity to a few, small regions on the c-TXNPx sequence. At a cellular level, PBMC from asymptomatic and cardiac patients proliferated and secreted interferon-γ after c-TXNPx stimulation, compared with mock control. However, only proliferation was higher in asymptomatic patients compared with cardiac and non-infected individuals. Furthermore, asymptomatic patients showed an enhanced frequency of CD19 CD69 cells upon exposure to c-TXNPx. Overall, our results show that c-TXNPx fails to induce a strong immune response in natural infection, being measurable only in those patients without any clinical symptoms. The low impact of c-TXNPx in the human immune response could be strategic for parasite survival, as it keeps this crucial antioxidant enzyme activity safe from the mechanisms of adaptive immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.