Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotemporal dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corticobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with increased risk of PSP and Parkinson's disease. We identified a rare tau variant (p.A152T) in a patient with a clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neurodegenerative conditions and controls, in a total of 15 369 subjects. Tau p.A152T significantly increases the risk for both FTD-s (n = 2139, OR = 3.0, CI: 1.6-5.6, P = 0.0005) and Alzheimer's disease (AD) (n = 3345, OR = 2.3, CI: 1.3-4.2, P = 0.004) compared with 9047 controls. Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pronounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains considered responsible for microtubule interactions or aggregation. These data provide both the first genetic evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenerative diseases, but since no clear significance threshold for rare genetic variation has been established, some caution is warranted until the findings are further replicated.
Only Apolipoprotein E polymorphisms have been consistently associated with the risk of late-onset Alzheimer disease (LOAD), but they represent only a minority of the underlying genetic effect. To identify additional LOAD risk loci, we performed a genome-wide association study (GWAS) on 492 LOAD cases and 498 cognitive controls using Illumina's HumanHap550 beadchip. An additional 238 cases and 220 controls were used as a validation data set for single-nucleotide polymorphisms (SNPs) that met genome-wide significance. To validate additional associated SNPs (p < 0.0001) and nominally associated candidate genes, we imputed SNPs from our GWAS using a previously published LOAD GWAS(1) and the IMPUTE program. Association testing was performed with the Cochran-Armitage trend test and logistic regression, and genome-wide significance was determined with the False Discovery Rate-Beta Uniform Mixture method. Extensive quality-control methods were performed at both the sample and the SNP level. The GWAS confirmed the known APOE association and identified association with a 12q13 locus at genome-wide significance; the 12q13 locus was confirmed in our validation data set. Four additional highly associated signals (1q42, 4q28, 6q14, 19q13) were replicated with the use of the imputed data set, and six candidate genes had SNPs with nominal association in both the GWAS and the joint imputated data set. These results help to further define the genetic architecture of LOAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.