BCL-2 proteins are critical for cell survival and are overexpressed in many tumors. ABT-737 is a small-molecule BH3 mimetic that exhibits single-agent activity against lymphoma and small-cell lung cancer in preclinical studies. We here report that ABT-737 effectively kills acute myeloid leukemia blast, progenitor, and stem cells without affecting normal hematopoietic cells. ABT-737 induced the disruption of the BCL-2/BAX complex and BAK-dependent but BIM-independent activation of the intrinsic apoptotic pathway. In cells with phosphorylated BCL-2 or increased MCL-1, ABT-737 was inactive. Inhibition of BCL-2 phosphorylation and reduction of MCL-1 expression restored sensitivity to ABT-737. These data suggest that ABT-737 could be a highly effective antileukemia agent when the mechanisms of resistance identified here are considered.
The poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor. Because it has been suggested that circulating bone marrow-derived stem cells can be recruited into solid organs in response to tissue stresses, we hypothesized that human bone marrow-derived mesenchymal stem cells (hMSC) may have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. To test this, we isolated hMSCs from bone marrow of normal volunteers, fluorescently labeled the cells, and injected them into the carotid artery of mice bearing human glioma intracranial xenografts (U87, U251, and LN229). hMSCs were seen exclusively within the brain tumors regardless of whether the cells were injected into the ipsilateral or contralateral carotid artery. In contrast, intracarotid injections of fibroblasts or U87 glioma cells resulted in widespread distribution of delivered cells without tumor specificity. To assess the potential of hMSCs to track human gliomas, we injected hMSCs directly into the cerebral hemisphere opposite an established human glioma and showed that the hMSCs were capable of migrating into the xenograft in vivo. Likewise, in vitro Matrigel invasion assays showed that conditioned medium from gliomas, but not from fibroblasts or astrocytes, supported the migration of hMSCs and that platelet-derived growth factor, epidermal growth factor, or stromal cell-derived factor-1A, but not basic fibroblast growth factor or vascular endothelial growth factor, enhanced hMSC migration. To test the potential of hMSCs to deliver a therapeutic agent, hMSCs were engineered to release IFN-B (hMSC-IFN-B). In vitro coculture and Transwell experiments showed the efficacy of hMSC-IFN-B against human gliomas. In vivo experiments showed that treatment of human U87 intracranial glioma xenografts with hMSC-IFN-B significantly increase animal survival compared with controls (P < 0.05). We conclude that hMSCs can integrate into human gliomas after intravascular or local delivery, that this engraftment may be mediated by growth factors, and that this tropism of hMSCs for human gliomas can be exploited to therapeutic advantage. (Cancer Res 2005; 65(8): 3307-18)
Injected MSC-IFN-beta cells suppressed the growth of pulmonary metastases, presumably through the local production of IFN-beta in the tumor microenvironment. MSC may be an effective platform for the targeted delivery of therapeutic proteins to cancer sites.
BackgroundTumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells.Methodology/Principal FindingsWe provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF–like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6.Conclusions/SignificanceOur results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors.
Aberrant DNA hypermethylation contributes to myeloid leukemogenesis by silencing structurally normal genes involved in hematopoiesis. MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression by targeting protein-coding mRNAs. Recently, miRNAs have been shown to play a role as both targets and effectors in gene hypermethylation and silencing in malignant cells. In the current study, we showed that enforced expression of miR-29b in acute myeloid leukemia cells resulted in marked reduction of the expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B at both RNA and protein levels. This in turn led to decrease in global DNA methylation and reexpression of p15 INK4b and ESR1 via promoter DNA hypomethylation. Although down-regulation of DNMT3A and DNMT3B was the result of a direct interaction of miR-29b with the 3 untranslated regions of these genes, no predicted miR-29b interaction sites were found in the DNMT1 IntroductionDNA methylation consists of an enzymatic addition of a methyl group at the carbon 5 position of cytosine in the context of the sequence 5Ј-cytosine-guanosine (CpG) and is mediated by DNA methyltransferases (DNMTs). 1 The promoter regions of approximately 50% of human genes contain regions of DNA with a cytosine and guanine content greater than expected (so-called CpG islands) that, once hypermethylated, mediate gene transcriptional silencing. 2 Distinct roles in genomic methylation have been reported for DNMT isoforms. Whereas DNMT1 preferentially replicates already existing methylation patterns, DNMT3A and 3B are responsible for establishing de novo methylation. 2 Silencing of structurally normal tumor suppressor genes by aberrant DNA hypermethylation has been reported in hematologic malignancies, including subsets of acute myeloid leukemia (AML). 3,4 Although the mechanisms leading to aberrant DNA hypermethylation remain to be fully elucidated, increased levels of DNMT1 and DNMT3A and 3B have been observed in malignant myeloid blasts compared with normal bone marrow (BM) mononuclear cells (MNCs), suggesting that DNMT overexpression contributes to gene promoter hypermethylation and in turn to leukemogenesis. 4 Growing evidence supports a role for microRNAs (miRNAs) as both targets and effectors in aberrant mechanisms of DNA hypermethylation. 5,6 miRNAs are noncoding RNAs of 19 to 25 nucleotides in length that regulate gene expression by inducing translational inhibition or cleavage of their target mRNAs through base pairing at partially or fully complementary sites. 7 Several groups have shown that miRNAs are altered in human malignancies and can function as tumor suppressor genes or oncogenes through expression regulation of their target genes. 7 Similar to tumor suppressor genes, miRNAs with tumor suppressor activity are often located in deleted genomic areas or are silenced by mutations or promoter hypermethylation in malignant cells. 5,[8][9][10] Saito et al recently demonstrated that miR-127 is silenced by promoter DNA hypermethylation and down-regulated in human bladder ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.